Octanol-Water Partition

• Another phase change

\[A_{\text{water}} \leftrightarrow A_{\text{octanol}} \]

\[K_{ow} = \frac{[A_{\text{octanol}}]}{[A_{\text{water}}]} \]
Octanol-Water Partition

• Why octanol?
 • drug uptake
 • animal testing
 • mortality related to K_{ow}
 • oral absorption (two needs)
 • drug must first pass through lipid bilayers in the intestinal epithelium
 • drug must be hydrophobic enough to partition into the lipid bilayer
 • drug must be hydrophilic enough to avoid retention, non-selective effects
Octanol-Water Partition

- Why octanol?
 - environmental transport
 - sorption to organic matter
 - uptake by organisms
 - organic matter and organisms are octanol-like

Model structure of humic acid (Stevenson 1982)
Octanol-Water Partition

- Wide range of $K_{ow} \quad 10^{-0.24}$

\[
\begin{array}{|c|c|}
\hline
\text{compound} & K_{ow} \\
\hline
\text{benzene} & 10^{2.13} \\
\text{phenol} & 10^{1.45} \\
\text{trichloroethene} & 10^{2.42} \\
\text{phenanthrene} & 10^{4.57} \\
\text{2,2',5,5'-tetrachlorobiphenyl} & 10^{6.18} \\
\hline
\end{array}
\]
Octanol-Water Partition

\[\gamma_{iw} = 3.7 \times 10^3 \]

\[1/\gamma_{iw} = x_{iw} = 2.7 \times 10^{-4} \]

1 water for \(\sim 4 \) octanol (Octanol)
8 octanol for \(\sim 100000 \) waters (Water)

\[K_{iow} = \frac{C_{io}}{C_{iw}} = \frac{\bar{V}_w}{\bar{V}_o} \times \frac{\gamma_{iw}}{\gamma_{io}} \]

pure n-octanol = 0.16 L/mol (at 25°C)

Use approximation or calculate

\[V_{mix} = (0.75)(0.16) + (0.25)(0.018) = 0.12 \text{ L mol}^{-1} \]
Octanol-Water Partition

- At equilibrium:

\[K_{ow} = \frac{[A_{oct}]}{[A_w]} \]

\[K_{ow} = \frac{x_{oct}}{x_w} \frac{V_{oct}}{V_w} = \frac{x_{oct} V_w}{x_w V_{oct}} = \left(\frac{1}{\gamma_{oct}} \right) \frac{V_w}{V_{oct}} \]

\[K_{ow} = \frac{\gamma_w V_w}{\gamma_{oct} V_{oct}} \]
Octanol-Water Partition

At equilibrium:

- molar volume of octanol
 - pure octanol, $V_{oct} = 0.16 \text{ L mol}^{-1}$
 - water in octanol: $1:4$
 - $V_{oct} = 0.12 \text{ L mol}^{-1}$
- molar volume of water
 - 1 octanol per 12,500 H$_2$Os
 - $V_w \sim 0.018 \text{ L mol}^{-1}$
Octanol-Water Partition

• Assumptions

 • $\gamma_w^{sat} \approx \gamma_w^{\infty}$
 - even at saturation, solute molecules will not be near each other

 • octanol present in water does not affect γ_w

 • $\gamma_{oct} \approx 1$ to 10 for most compounds

\[K_{ow} = \frac{[A_{oct}]}{[A_w]} = \frac{\gamma_w \bar{V}_w}{\gamma_{oct} \bar{V}_{oct}} \]
Octanol-Water Partition

• Is K_{ow} related to aqueous solubility?
 • $\log K_{ow}$ vs. $\log C_w^{sat}(L)$

$$
K_{ow} = \frac{[A_{oct}]}{[A_w]}
$$

$$
K_{ow} = \frac{C_{oct}^{sat}(L)}{C_w^{sat}(L)} = \frac{1}{C_w^{sat}(L)} \frac{1}{\gamma_{oct} V_{oct}}
$$

$$
\log K_{ow} = -\log C_w^{sat}(L) - \log \gamma_{oct} - \log V_{oct}
$$
Octanol-Water Partition

• Experimental determination of K_{ow}
 • “shake flask”
 • measure solute distribution in octanol and water phases
 • (should be) limited to $K_{ow} < 10^5$
• poor reproducibility among researchers
 • e.g., DDT, log K_{ow} range of 4.89 to 6.91; over 60 different papers
 (Pontolillo and Eganhouse, 2001)
 • need for reliable estimation method
Octanol-Water Partition

Pontolillo and Eganhouse (2001)

- original data correctly cited
- “erroneous data” (incorrectly cited)
Octanol-Water Partition

• Example: lindane
 • 10^{-6} mole of lindane is added to 100 mL separatory funnel containing 10 mL of octanol and 90 mL of water.

At equilibrium and 25°C, what concentration (M) of lindane will be found in the water?
Octanol-Water Partition

17 oz. multi-dose bottle
O.T.C.* lindane from Canadian sources

2 oz. single-dose bottle
Prescription lindane in U.S.

by Sean Delonas
New York Post - Jan. 18, 1995
Octanol-Water Partition

- Lindane
 - $K_{ow} = 10^{3.78}$

γ-hexachlorocyclohexane

\[f_w = \frac{\text{total moles in water}}{\text{total moles in octanol and water}} \]

\[f_w = \frac{[\text{lin}]_w V_w}{[\text{lin}]_o V_o + [\text{lin}]_w V_w} \]

$K_{ow} = \frac{[\text{lin}]_o}{[\text{lin}]_w}$

$[\text{lin}]_o = K_{ow}[\text{lin}]_w$

\[f_w = \frac{[\text{lin}]_w V_w}{K_{ow}[\text{lin}]_w V_o + [\text{lin}]_w V_w} \]

\[f_w = \frac{V_w}{K_{ow} V_o + V_w} \]
Octanol-Water Partition

- Lindane
 - $K_{ow} = 10^{3.78}$

$$f_w = \frac{V_w}{K_{ow}V_o + V_w}$$

$$f_w = \frac{90 \text{ mL}}{(10^{3.78} \times 10 \text{ mL}) + 90 \text{ mL}} = 0.0015$$

$$n_{lin,w} = f_w n_{lin,T} = (0.0015)(10^{-6} \text{ mol}) = 1.5 \times 10^{-9} \text{ mol}$$

$$[lin]_w = \frac{n_{lin,w}}{V_w} = \frac{1.5 \times 10^{-9} \text{ mol}}{0.090 \text{ L}} = 1.7 \times 10^{-8} \text{ M}$$
Octanol-Water Partition

• Estimation of K_{ow}
 • related to partitioning in other solvents
 • butanol, hexane
 • not much data
 • related to aqueous solubility and activity coefficients (Table 7.3, book)
 \[
 \log K_{ow} = -a \log C_w^{sat} + b'
 \]
 \[
 \log K_{ow} = a \log \gamma_w + b
 \]
 • related to retention time in chromatography (Figure 7.7 next slide)
Octanol-Water Partition

Figure 7.7 Relation between log octanol–water partition constants and log retention times on a reversed-phase liquid chromatography system for a series of nonpolar organic compounds (data from Veith et al., 1979).

C-18 column, MeOH: Water system, use reference compounds
Octanol-Water Partition

- Example
 - estimate the K_{ow} of lindane using its aqueous solubility and $T_m = 112 \degree C$

<table>
<thead>
<tr>
<th>Set of Compounds</th>
<th>n</th>
<th>R^2</th>
<th>$a(\pm \sigma)$</th>
<th>$b(\pm \sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkanes</td>
<td>16</td>
<td>0.91</td>
<td>0.81</td>
<td>-0.20</td>
</tr>
<tr>
<td>Polycyclic aromatic hydrocarbons</td>
<td>8</td>
<td>0.99</td>
<td>0.87(±0.03)</td>
<td>0.68(±0.16)</td>
</tr>
<tr>
<td>Substituted benzenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only nonpolar substituents</td>
<td>23</td>
<td>0.98</td>
<td>0.86(±0.03)</td>
<td>0.75(±0.09)</td>
</tr>
<tr>
<td>Including polar substituents</td>
<td>32</td>
<td>0.86</td>
<td>0.72(±0.05)</td>
<td>1.18(±0.16)</td>
</tr>
<tr>
<td>Phthalates</td>
<td>5</td>
<td>1.00</td>
<td>1.06(±0.03)</td>
<td>-0.22(±0.09)</td>
</tr>
<tr>
<td>PCBs</td>
<td>14</td>
<td>0.92</td>
<td>0.85(±0.07)</td>
<td>0.78(±0.47)</td>
</tr>
<tr>
<td>Alcohols</td>
<td>41</td>
<td>0.94</td>
<td>0.90</td>
<td>0.83</td>
</tr>
<tr>
<td>Miscellaneous pesticides</td>
<td>14</td>
<td>0.81</td>
<td>0.84(±0.12)</td>
<td>0.12(±0.49)</td>
</tr>
</tbody>
</table>
Octanol-Water Partition

• Lindane
 • alkane? PCB?

\[
\log K_{ow} = -0.85 \log C_{w}^{sat} (L) + 0.78
\]

• \(C_{w}^{sat}(L) \)
 • solubility of liquid or subcooled liquid
 • no melting for octanol-water partition

\[
C_{w}^{sat} (L) = C_{w}^{sat} (s) \frac{p_{L}^{*}}{p_{s}^{*}}
\]
Octanol-Water Partition

- Lindane
 - \(C_{w}^{\text{sat}}(s) = 10^{-4.60} \text{ M} \)
 - \(p_{s}^{\ast}/p_{L}^{\ast} \) ?
 - \(\tau = ? \)
 - \(\sigma = ? \)

\[
\ln \frac{p_{s}^{\ast}}{p_{L}^{\ast}} = -(6.8 + 1.1\tau - 2.3 \log \sigma) \left(\frac{T_{m}}{T} - 1 \right)
\]
Octanol-Water Partition

• Lindane
 • What is the torsional bond number τ for lindane?

 A. 0
 B. 5
 C. 5.5

$$\tau = \sum (SP3 + 0.5SP2 + 0.5RING) - 1$$
$$\tau = \sum (0 + 0.5(0) + 0.5(1)) - 1$$
$$\tau = 0$$
Octanol-Water Partition

• Lindane
 • What is the rotational symmetry number σ for lindane?

A. 1
B. 2
C. 4
D. 12
Octanol-Water Partition

• Lindane
 • \(C_w^{sat}(s) = 10^{-4.60} \text{ M} \)
 • \(\frac{p_s^*}{p_L^*} \)
 • \(\tau = 0; \quad \sigma = 1 \)

\[
\ln \frac{p_s^*}{p_L^*} = -\left(6.8 + 1.1(0) - 2.3\log(1)\right)\left(\frac{385.2}{298.2} - 1\right)
\]

\[\ln \frac{p_s^*}{p_L^*} = -1.98\]

\[
\frac{p_s^*}{p_L^*} = 0.14 \quad \frac{p_L^*}{p_s^*} = 7.2
\]
Octanol-Water Partition

- Lindane

\[C_{w}^{\text{sat}}(L) = C_{w}^{\text{sat}} \frac{P_L^*}{P_s} = 10^{-4.60} \quad (7.2) \]

\[C_{w}^{\text{sat}}(L) = 10^{-3.74} \text{ M} \]

\[\log K_{ow} = -0.85 \log C_{w}^{\text{sat}}(L) + 0.78 \]

\[\log K_{ow} = -0.85(-3.74) + 0.78 \]

\[\log K_{ow} = 3.96 \quad \text{measured } \log K_{ow} = 3.78 \]