6.28
\[X = \text{Travel management professional's salary} \]

P257
Average salary \(\mu = $97,300 \), st. dev. \(\sigma = 39,000 \)

\(n = 50 \)

\(\overline{x} = \text{average salary for a sample of } n = 50 \)

Distr. of \(\overline{x} \)

a) \(\mu_{\overline{x}} = \mu = $97,300 \)

b) \(\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{39,000}{\sqrt{50}} = 4,242.681 \)

c) Because \(n = 50 \) is > 30, the distr. of \(\overline{x} \) is APPROX Normal.

d) \(Z = \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}} = \frac{\overline{x} - 97,300}{4,242.681} \)

For \(\overline{x} = 89,500 \) \(\Rightarrow Z = \frac{89,500 - 97,300}{4,242.681} = 1.84 \)

e) \(P[\overline{x} > 89,500] = P[Z > 1.84] = .5 + .4671 = .9671 \)

6.28(b) For Pop. \(\mu = 30, \sigma = 16 \)

P257
Sample size \(n = 100 \) is large; therefore, distr. of sample mean \(\overline{x} \) is APPROX Normal with mean \(\mu_{\overline{x}} = \mu = 30 \) and st. dev.

\[\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{16}{10} = 1.6 \]

Thus \(Z = \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}} = \frac{\overline{x} - 30}{1.6} \)
By \(P\left[22.1 \leq x \leq 26.8\right] \)

For \(\bar{x} = 22.1 \), \(z_1 = \frac{22.1 - 30}{1.6} = -4.94 \)

For \(\bar{x} = 26.8 \), \(z_2 = \frac{26.8 - 30}{1.6} = -2.00 \)

From table for \(z_1 = -4.94 \), area \(A_1 = .50 \)

From table for \(z_2 = -2.00 \), area \(A_2 = .4772 \)

\[P\left[22.1 \leq x \leq 26.8\right] = P\left[-4.94 \leq z \leq -2.00\right] = A_1 - A_2 \]

\[= .5000 - .4772 = .0228 \]