Say which are "TRUE" or "FALSE" (2 points each)

10. (a) If \(L \) is a language on \(\{0,1\} \), we can never have \((L^c)^c = (L^c)^c \).

(b) The set of all languages on the alphabet \(\{a\} \) is countable.

(c) If \(L \) contains \(L^c \), then \(L \) has to be a infinite language.

(d) If \(G \) has 3 productions and no useless ones, then \(L(G) \neq \emptyset \).

(e) If a DFA \(M \) has no inaccessible states and it has a loop at an accepting state, then \(L(M) \) is infinite.

Just write down the correct answer. (3,3,4,4,4)

18. (a) Find a regular expression \(E \) for the set of all strings in \(\{0,1\}^* \) which contains at least 2 occurrences of the string 11.

Ans: \(E = \)

(b) If \(M \) is the NFA below, then \(L(M) = \)

(c) If \(G = \{S \rightarrow ASB, S \rightarrow b, A \rightarrow a, B \rightarrow b, B \rightarrow \lambda\} \), then \(L(G) = \)

(d) Find a RLG \(G \) for \(a(ab)^*a^* \)

Ans: \(G = \)

(e) Find a DFA \(M \) with \(L(M) = (0.1^*) + (0^*) \)

Ans: \(M = \)

Use the back of this paper for question #3. (4,2,2,4)

12. (a) Define what are non-terminating & unreachable productions in a CFG.

(b) Define what it means for a context-free grammar \(G \) to be ambiguous.

(c) Define what it means for a state \(B \) in DFA \(M \) to be inaccessible.

(d) Define the extended transition function of an DFA and specify its domain and co-domain.
1(a) TRUE. For any L, $\lambda \in (L^c)^c$ but $\lambda \notin (L^c)^c$ since $\lambda \notin L^c$.
(b) FALSE. The set of all lang. on $\{a\}$ is uncountable.
(c) FALSE. Take $L = \{a\}$. Then $L \subseteq L^*$ but L is not m.f.
(d) TRUE. $L(G) \neq \emptyset$ because we have 3 useful productions.
(e) TRUE. $L(M)$ will be infinite because of the loop.

2(a) $E = (0+1)^* \cdot (111 + 11 \cdot (0+1)^* \cdot 11) \cdot (0+1)^*$
(b) $L(M) = 0^* \cdot 1 \cdot (0, 0^*)^*$
(c) $L(G) = \{a^{2n}b^k : 0 \leq k \leq n, n \geq 0\} = \{a^{2n}b^k : k \in \mathbb{N}\}$
(d) $S \rightarrow aA, A \rightarrow abA, A \rightarrow B, B \rightarrow ab, B \rightarrow \lambda$
(e)

3(a) A non-terminating production is one which contains a variable that does not eventually terminate into terminal symbols.
(b) A CFG is ambiguous if it generates a string which has 2 or more left-most derivations in G.
(c) A state B in a DFA M is inaccessible if there is no string $y \in \Sigma^*$ such that $S^*(q_0, y) = B$. Here q_0 is the initial state of M and $\Sigma = \text{input alphabet of } M$.
(d) The extended transition function $S^* : Q \times \Sigma^* \rightarrow Q$ of a DFA is defined recursively as follows. (a) $S^*(q, \lambda) = q$ and (b) $S^*(q, ya) = S(S^*(q, y), a)$ for any $a \in \Sigma$ and $y \in \Sigma^*$.