TEST #2 - Spring 2008
Answer all 6 questions. Provide all reasoning and show all working. An unjustified answer will receive little or no credit. Begin each question on a separate page.

(15) 1. Let L be the language accepted by the NFA shown on the right. Find NFAs which accept
(a) L^c (b) (L^c)^R.

(15) 2. (a) Find an NFA which is equivalent to the RLG given below.
 G: S->A, S->01B, A->01A, A->0C, B->A,
 B->1D, C->01, C->D, D->01S, D->11.
 (b) Convert the NFA shown below on the right in Qu.#3 into an equivalent RLG.

(18) 3(a) Find a regular expression for
 the language accepted by the NFA shown on the right.
 (b) Write down what the Halting Problem says and define what is
 the Busy-beaver function.

(18) 4(a) Define what are the initial functions and what is the
 operation known as primitive recursion.
 (b) Show that f(x,y) = 3x+4y+1 is a primitive recursive function
 by finding primitive recursive functions g and h such that
 f = prim.rec.(g,h).
 [You must show that your g and h are primitive recursive.]

(16) 5(a) Define what is a Turing computable function with domain D.
 (b) Show what happens at each step if
 01010 is the input for the TM, M shown on the right.
 (c) Find the language accepted by M.

(18) 6. Determine which of the following languages are regular and
 which are not.
 (a) L_1=\{a^k.b^k: k=n^2+1 (mod 3)\} (b) L_2=\{b^k.c^n: k<n^2+1\}
 [If you say that it is regular, you must find a regular
 expression for it; if you say it is non-regular, you must give a
 complete proof. You may use the Pumping Lemma, if you so desire.]
Solutions to Test #2

1. \(\{A\} \xrightarrow{o} \{B\} \xrightarrow{o} \emptyset \xrightarrow{o} \emptyset \)
\(\{A\} \xrightarrow{1} \{A, B\} \xrightarrow{0} \{B\} \xrightarrow{1} \{A, B\} \)

Note: DFAs are special NFAs

DFA for \(L \)

OAS - NFA for \(L^c \)

2(a) \(S \xrightarrow{0} B \xrightarrow{0} C \xrightarrow{0} Z \)

\(S \xrightarrow{1} A \xrightarrow{0} C \xrightarrow{1} D \xrightarrow{0} E \xrightarrow{1} \)

\(B \xrightarrow{1} D \xrightarrow{0} E \)

[\(\rightarrow C \) means \(C \) is the starting variable]

(b) \(\rightarrow C \), \(C \rightarrow 1A \), \(A \rightarrow oA \), \(A \rightarrow 1B \), \(B \rightarrow oC \)
\(B \rightarrow 0D \), \(D \rightarrow 0E \), \(E \rightarrow 1B \), \(E \rightarrow 0C \), \(E \rightarrow \lambda \)

3(a) Eliminate A to get —

Eliminate D to get —

Eliminate B to get —

\(L(M) = r_1^* r_2 (r_4 + r_3 r_1^* r_2)^* \)
\(= (10^*10)^* 10^*100 \cdot (100 + (0+10)(10^*10)^* 10^*100)^* \)
3(b) The Halting Problem asks if there is a TM such that for an arb. TM M and an arb. input w for M,
H halts on $c(M)\#q(w)$ in an acc. state if M halts on w &
H halts on $c(M)\#q(w)$ in a non-acc. state if M does not halt on w.
Let \mathcal{H}_n = set of all TMs with n states & tape
alphabet $\{0,1\}$ which halts when started on the blank tape.
$L(n)$ = maximum number of 1's that a TM in \mathcal{H}_n can produce.

4(a) The initial functions are: the constant 0, the zero function $z(x) = 0$,
the successor function $s(x) = x + 1$, and the projective functions
$I^{(n)}_k$ which are defined by $I^{(n)}_k(x_1, \ldots, x_n) = x_k$; $1 \leq k \leq n$.

Primitive recursion is the operation which produces a
function $f: \mathbb{N}^n \to \mathbb{N}$ from the functions $g: \mathbb{N} \to \mathbb{N}$ & $h: \mathbb{N}^n \to \mathbb{N}$
by putting $f(x, 0) = g(x)$ & $f(x, y+1) = h(x, y, f(x, y))$.

(b) $f(x, 0) = 3x + 1 \iff g(x)$
$g(0) = 3(0) + 1 = 1$
$f(x, y+1) = 3x + 4(y+1) + 1$
$\quad = (3x + 4y + 1) + 4$
$\quad = f(x, y) + 4 \iff h(x, y, f(x, y))$
$\quad = (3y + 1) + 3$
$\quad = g(y) + 3$

g = prim. rec. $(s_0, s_0, s_0, I^{(2)}_2)$ & $h = s_0, s_0, s_0, I^{(3)}_2$
f = prim. rec. (prim. rec. $(s_0, s_0, s_0, I^{(2)}_2)$, $s_0, s_0, s_0, I^{(3)}_2$)

5(a) A function with domain \mathcal{D} is said to be Turing-computable
if we can find a TM M such that for each $x \in \mathcal{D}$,
$(g_x, w) \vdash^{*} (g_y, f(w))$ is a halted computation in M with $g_y \in \mathcal{A}$.

(b) $\langle A, 0101 \rangle \vdash^{*} \langle D, 1101 \rangle \vdash^{*} \langle B, 1110 \rangle \vdash^{*} \langle C, 1100 \rangle$
$\quad \vdash^{*} \langle B, 1110 \rangle \vdash^{*} \langle C, 1101 \rangle \vdash^{*} \langle F, 1110 \rangle$

(c) $L(M) = 0^* + 0^*10(10)^* + 10(10)^* = 0^* + (00 + \lambda)10(10)^*$
6(a) If \(N = 0 \pmod{3} \), then \(k = 0^2 + 1 = 1 \pmod{3} \); if \(N = 1 \pmod{3} \), then \(k = 1^2 + 1 = 2 \pmod{3} \); & if \(N = 2 \pmod{3} \), \(k = 2^2 + 1 = 2 \pmod{3} \).
So \(L_1 = a(aaa)^*bbb^* + a(aaa)^*bbb^* + a(aaa)^*bbbbb^*\)
and is therefore a regular language.

(b) Suppose \(L_2 \) was a regular language. Then we can find
a DFA \(M \) such that \(L(M) = L_2 \). Let \(N \) be the number
of states in \(M \) and consider the string \(b^{N^2}c^N \). Since
\(N^2 < (N+1)^2 \), \(b^{N^2}c^N \in L_2 \) & will be accepted by \(M \).
Since it takes \(N+1 \) states to process the \(c^N \), the acceptance
track of \(b^{N^2}c^N \) must have a loop as shown below with
\(j \geq 1 \).

Now if we skip this loop, we will see that \(M \) accepts
\(b^{N^2}c^i c^{N-i-j} = b^{N^2}c^{N-j} \).
But \(N^2 \neq (N-j)^2 + 1 \), so this contradicts the fact
that \(L(M) = L_2 \). Hence \(L_2 \) cannot be a regular lang.