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Karl Pearson and R. A. Fisher on Statistical Tests: 
A 1935 Exchange From Nature 

Henry F. INMAN 

In 1935, a letter to Nature criticizing the logic of statistical 
tests provoked published responses from Karl Pearson and 
R. A. Fisher. Their letters illustrate the attitudes of the 
two men toward the hypothesis-testing problem soon after 
the Neyman-Pearson formulation and shortly before Karl 
Pearson's death. 

KEY WORDS: Goodness-of-fit test; History of statistics; 
Philosophy of scientific inference. 

1. INTRODUCTION 
In 1935 Karl Pearson (1857-1936) and R. A. Fisher 

(1890-1962) exchanged letters in Nature on testing sta- 
tistical hypotheses. Compared with their other disagree- 
ments, public and private, this dispute proved to be rela- 
tively mild. These letters demonstrate the differing per- 
spectives these men brought to bear on the problem of 
testing hypotheses and, more generally, their disparate 
views on the role of statistical inference in scientific in- 
quiry. Pearson's lengthier letters offer more insight into 
his position than does Fisher's single letter, but Fisher's 
letter exhibits several interesting features of his style of 
argument. This exchange is also significant because it il- 
lustrates the conflict between what E. S. Pearson called 
Mark I and Mark II statistical inference after the initial 
development of the Neyman-Pearson approach to tests of 
statistical hypotheses. 

Neither Fisher nor Karl Pearson was a stranger to scien- 
tific controversy, and each man had used letters published 
in Nature for public disputation. Pearson had contributed 
a stream of letters and reviews to Nature since 1882. Sev- 
eral of Fisher's disputes were waged in the letters column 
of Nature; his argument with "Student" about the merits of 
randomized versus systematic agricultural experiments is 
only one example. Although Pearson and Fisher alluded 
to some of their previous quarrels in their 1935 letters, 
the primary issue was the complaint of a working scien- 
tist who opined that the statistical tests developed by the 
two men were largely irrelevant to scientific practice. It is 
this focus on the confusing relationship between science 

and statistical inference-confusion frequently shared by 
statisticians as well as scientific investigators-that calls 
for our reconsideration of the responses Pearson and Fisher 
offered to their challenger. Fisher's letter is reproduced in 
Bennett's compilation of Fisher's papers (Bennett 1973, 
p. 328-329), and Karl Pearson's letters are cited by E. S. 
Pearson (1938) and Morant (1939), but here these three 
letters are for the first time considered together with the 
letter that initiated the correspondence. In addition to pre- 
senting the letters themselves, I provide introductory com- 
ments and a concluding discussion of the issues Pearson 
and Fisher examined and the context they chose for the 
development of statistical inference. 

2. THE CHALLENGE 

Pearson's and Fisher's letters were replies to an invi- 
tation to "some statistician of international repute" con- 
tained in a letter on statistical tests that appeared in Na- 
ture on August 3, 1935. The letter's author was Hugo 
John Buchanan-Wollaston (1883-1970), a naturalist on 
the scientific staff of the fisheries laboratory maintained 
at Lowestoft, England, by the Ministry of Agriculture, 
Fisheries and Food. Unable to pursue a university educa- 
tion for financial reasons, Buchanan-Wollaston obtained 
his scientific training by working as an assistant to ma- 
rine zoologists at Liverpool and Larne, Northern Ireland. 
According to Lee (1992), Buchanan-Wollaston joined the 
Lowestoft laboratory shortly after the Marine Biological 
Association established it in 1902. By 1909, Buchanan- 
Wollaston was a member of the laboratory's scientific 
staff; he was transferred to the (then) Board of Agricul- 
ture and Fisheries in 1910, when the Board took control 
of the Lowestoft fishery laboratory and its investigations 
(Lee 1992, pp. 67-68, 71; Marine Biological Association 
1912, pp. iii, vi). Buchanan-Wollaston soon thereafter 
moved to the Board's London laboratory. During World 
War I, Buchanan-Wollaston served as an officer in the 
Royal Flying Corps. After the war, he rejoined the Min- 
istry of Agriculture and Fisheries; he returned to Low- 
estoft when the Ministry reestablished its fisheries labo- 
ratory there (Lee 1992, p. 114). During the 1920s and 
1930s, Buchanan-Wollaston contributed a stream of re- 
ports and articles to the Ministry's Fishery Investigations 
and to publications sponsored by the International Coun- 
cil for the Exploration of the Sea. Buchanan-Wollaston 
remained at Lowestoft until the outbreak of World War II, 
when the staff of the fisheries laboratory was evacuated. 
Buchanan-Wollaston was moved to the Freshwater Bio- 
logical Association's laboratory at Wray Castle, where he 
quickly became involved in their research program (Fresh- 
water Biological Association 1943, p. 7; 1944, p. 7). 
Buchanan-Wollaston remained at Wray Castle as statisti- 
cal advisor for a year after he retired from his position with 
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the Ministry of Agriculture and Fisheries in 1944 (Fresh- 
water Biological Association 1945, p. 5; 1946, p. 5). 

Buchanan-Wollaston's interest in statistical methods ap- 
pears to have begun with his efforts to determine the 
distribution of commercial fish stocks in the North Sea 
on the basis of trawler sampling (Buchanan-Wollaston 
1916) and with the use of fish-egg surveys to estimate 
the extent of fish populations in the North Sea (Buchanan- 
Wollaston 1911a, 1923, 1926; Lee 1992, p. 108). He 
was concerned with both the mechanical and statistical 
problems associated with trawler sampling in the open 
sea (Buchanan-Wollaston 191 ib, 1927, 1929, 1937; Lee 
1992, pp. 1 101 1 1). In 1923, Buchanan-Wollastonjoined 
D'Arcy Thompson's attack on the use of scale rings to 
determine the age of herring, but Buchanan-Wollaston's 
alternative methodology was quickly rejected (Buchanan- 
Wollaston 1924; Lee 1992, p. 112). In 1924, Buchanan- 
Wollaston began a study of fish growth rates that led him 
to propose a graphical method for decomposing mixtures 
of normal distributions (Buchanan-Wollaston and Hodges 
1929) that has occasionally been cited in the statistical 
literature. 

Prior to 1933, Buchanan-Wollaston's statistical ap- 
proach can be fairly characterized as graphical or math- 
ematical interpolation. Sample estimates generally were 
taken at face value, although Buchanan-Wollaston at times 
did concern himself formally with the statistical reliability 
of his estimates (as in Buchanan-Wollaston 1923, pp. 26- 
28). Buchanan-Wollaston certainly performed no statisti- 
cal tests. Like many working scientists since, Buchanan- 
Wollaston professed a belief that commonly used statisti- 
cal tests were either obvious or irrelevant to the scientific 
problem of interest: 

In discussions on statistical tests with various Continental 
statisticians and users of statistical methods, I have been struck 
by their universal mistrust of modem statistical tests as developed 
by Pearson, Fisher and other workers in Great Britain. I have come 
to the conclusion that the main reason for this attitude is a perfectly 
sound reason, namely, that a test is used by many workers in Great 
Britain as a simultaneous test of the untruth of one hypothesis and 
the truth of the reverse hypothesis. There is in fact a large region 
in the distribution of the criterion for which neither a hypothesis 
nor its reverse can be assumed to be true. One or the other is true, 
of course, but the test cannot help us in coming to a decision on the 
matter. Judgment must be reserved. For example, we may wish 
to test whether a given sample differs significantly from a random 
sample from a normal population. Applying the x2 test, after 
finding the best fitting normal distribution, and using p = 0.05, 
say, as the level of significance, we may find that our sample is 
just not significantly abnormal. 

The x2 criterion is perfectly justifiable up to this point. It is 
quite unjustifiable, however, to assert that the reverse hypothesis 
is true, namely, that the sample is likely to have come from a 
normal population, unless we have other reasons to believe this, 
in which case, of course, the x2 is not used as a criterion of 
the truth of the reverse hypothesis. Given an equal possibility 
of an infinite variety of populations, the most likely group of 
distributions to have given it contains all those which will give the 
modal x2 value for the appropriate number of degrees of freedom. 
All these and an infinite number of others may be considered 
as likely to have given the sample, compared to the best-fitting 
normal distribution, which has indeed comparatively a very small 
likelihood. This likelihood is sufficient, however, to prevent our 
assuming abnormal distribution. 

It is often of scientific and practical interest to investigate 

whether Gauss's law or other simple laws of distribution apply to 
a sample. There is no doubt that the x2 test, as usually applied, 
is quite useless for this purpose, though it may be most useful 
as a test of significant heterogeneity, using a low value of P as 
a criterion. It seems only reasonable that but a small part of the 
centre of the x2 distribution should be used as a test offit. 

I believe the mistrust of British methods on the part of statis- 
ticians of other countries to be due partly to their failure to real- 
ize that the word 'normal' is usually employed to cover samples 
which are likely to have arisen from populations the estimates of 
the mean and other parameters of which have distributions very 
similar to those of the corresponding normal parameters. The fact 
that British methods 'work' is due to the prevalence in Nature of 
distributions similar to the Gaussian rather than to any peculiar 
virtue in the methods themselves. I am writing this in the hope 
that some statistician of international repute will be tempted to 
treat the matter fully in some publication such as Nature available 
to statisticians of all countries. (Buchanan-Wollaston 1935a) 

Buchanan-Wollaston's criticism of statistical tests is 
particularly interesting in light of his relationship with 
Fisher. At some point between 1931 and 1933, Buchanan- 
Wollaston was permitted by his Ministry to study with 
Fisher at Rothamsted, England. While visiting Rotham- 
sted, Buchanan-Wollaston carried out an analysis of sam- 
ple data, "working under the personal supervision of Dr. 
Fisher," directed toward the possibility of distinguishing 
"races"9 of herring on the basis of counts of their verte- 
brae. Assuming an underlying normal distribution for the 
observed discrete vertebral counts in each of his samples, 
Buchanan-Wollaston estimated the parameters of these 
normal distributions on the basis of grouping by maxi- 
mum likelihood, determined that differences among these 
distributions could be explained by differences among 
the means, and proceeded to an unbalanced analysis of 
variance through multiple regression with indicator vari- 
ables. In his written account of this analysis, Buchanan- 
Wollaston claimed that his main object was "to intro- 
duce into fishery research some of the most important 
methods developed by R. A. Fisher"; Fisher himself con- 
tributed a short introductory note (Buchanan-Wollaston 
1933). Buchanan-Wollaston also published expositions 
of statistical analysis that were based heavily on Fisher's 
(1925a) work (Buchanan-Wollaston 1935b, 1936), and the 
sophistication of his later statistical work shows Fisher's 
continuing influence (Buchanan-Wollaston 1935c, 1938, 
1945, 1958). According to his son, Buchanan-Wollaston 
always held Fisher in the highest regard. 

There was also a much more indirect link between 
Buchanan-Wollaston and Karl Pearson. During the Ma- 
rine Biological Association's operation of the Lowestoft 
laboratory at the beginning of Buchanan-Wollaston's sci- 
entific career, W. F. R. Weldon was one of the governors 
of the council that supervised the fishery investigations, 
and Edgar Schuster served as statistical advisor and mem- 
ber of the council (Marine Biological Association 1905, 
p. iii; 1907, p. iii; 1912, p. iii). Schuster served on the 
fishery research advisory committee of the Board of Agri- 
culture and Fisheries after the Board assumed responsibil- 
ity for the Lowestoft investigations (Board of Agriculture 
and Fisheries 1913, p. 2). Pearson's close personal friend 
and colleague, Weldon was the initiator of the biometric 
research program that prompted Pearson's first statistical 
investigations. Later assistant secretary of the forerunner 
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of the Medical Research Council of Great Britain, Schus- 
ter had been Weldon's student, the first Galton Research 
Fellow at University College London, and author of two 
of the first research memoirs issued after Pearson took 
control of the Galton Laboratory. Schuster had actively 
defended Pearson during the controversies that developed 
from Pearson's eugenic investigations. 

3. PEARSON'S FIRST RESPONSE 

In 1935 Karl Pearson was 78. Two years earlier, he had 
retired from his professorship at University College Lon- 
don. Despite his objections, Pearson's statistical labora- 
tories were divided into separate departments of statistics 
and eugenics. His son, E. S. Pearson, became head of the 
new Department of Statistics. Karl Pearson's successor as 
Galton Professor of National Eugenies was R. A. Fisher. 
In office space provided by the Department of Zoology, 
Pearson continued to edit Biometrika until his death in 
April 1936. 

In this letter, published on August 24, 1935, Pearson 
refers to the x2 goodness-of-fit test as the P, x2 test; P rep- 
resents the observed significance level obtained from the 
x approximation to the distribution of Pearson's test cri- 
terion (K. Pearson 1900; see also K. Pearson 1916, 1922, 
1932). The P, A,, test to which Pearson also referred was 
Pearson's proposal for a small-sample alternative to the 
usual x2 test that is based on grouping the sample data 
values. (In this test, A,, was the product of the individual 
sample data values transformed by the hypothesized dis- 
tribution function integral. Pearson noted that the trans- 
formed values could be viewed as independent uniform 
(0, 1) deviates when the null distribution held, and thus 
- loge(A,,) followed a gamma distribution. Pearson ar- 
gued that large values of this test statistic indicated lack 
of fit for the hypothesized distribution, and the observed 
significance level P was calculated accordingly. As in 
his presentation of the x2 test, Pearson chose to ignore the 
effect of estimating from the sample the parameters neces- 
sary for the integral transformation on the subsequent test 
for uniformity with the transformed data values; see K. 
Pearson 1933.) Pearson also used graduation throughout 
his discussion to connote a fitted mathematical model for 
the observed data. In the common case of data supposed 
to have been obtained from a continuous distribution, the 
graduation curve is the estimated distribution curve or 
density. 

As the originator of the P, x2 test, I should be glad if you 
can spare me space for some reply to Mr. Buchanan-Wollaston. 
I should like first to state that I am in no way responsible for all 
the applications which have recently been made of that test, and 
do not accept the validity of some of the applications which Prof. 
R. A. Fisher has made of it in his well-known textbook. I am not 
concerned with his position and leave him to defend it. My own 
position is as follows: 

(i) I introduced the P, x2 test to enable a scientific worker 
to ascertain whether a curve by which he was graduating 
observations was a reasonable 'fit'. On this account, and as 
a measure of success in graduation, I termed it a 'goodness 
of fit' test. It had no special relation to the normal curve 
or to any other curve. The scientific worker in the past had 
chosen any curve he pleased to graduate his observations, 
but he rarely applied any measure of its aptness, beyond 

looking at a graph to 'see' whether it was a 'good fit'. The 
pages of the Royal Society Transactions and Proceedings 
are evidence enough of this fact. 

(ii) As a measure of 'goodness of fit', the P, x2 test does enable 
one to compare the relative advantages of any two gradua- 
tion curves. But I personally have never assumed that the 
better graduation curve was the one from which the material 
had actually been drawn. 

(iii) I have shown both theoretically and experimentally that 
there is a high correlation between the 'goodness of fit' of 
a graduating curve to a sample, and the 'goodness of fit' of 
that curve to the parental population from which the sample 
has been drawn. Accordingly, if the sample be large, the 
graduating curve may be taken as representing reasonably 
the parent population. 

(iv) I have shown that, when dealing with small samples, no 
real distinction can be made between sampling from, say, a 
normal curve or a rectangle. It requires at least a sample of 
more than 100 individuals to determine whether it would 
be best to use a rectangle or some other curve! I have 
repeatedly insisted that little can be learnt of the superiority 
of one graduating curve over another, if the sample be not 
of considerable size, say, well beyond the 100 mark. 

All this proves that the P, x2 test has no relation to Mr. 
Buchanan-Wollaston's remark that: "The fact that British 
methods 'work' is due to the prevalence in Nature of dis- 
tributions similar to the Gaussian [sic] rather than to any 
peculiar virtue in the methods themselves." It would appear 
from this remark that my critic and his 'Continental work- 
ers' have never gone beyond applying the test to question- 
ing whether the normal curve was a reasonable graduating 
curve! 

(v) The only relation of the P, x2 test to the normal curve arises 
from the use of that curve in the analysis to replace bino- 
mials by normal curves. Such replacement is not legiti- 
mate theoretically, when in the binomial (p + q)n, p is very 
much larger or very much smaller than q. This has led to 
the practice of clubbing together small 'tail' groups. But 
practically there is, as a rule, very small difference in the 
resultant P's, whether we club tail groups and reduce the 
number of cells, or work P out for the full number after 
considering outlying individuals which may be anomalous. 
I do not therefore understand Mr. Buchanan-Wollaston's 
remark that: "it seems only reasonable that but a small part 
of the centre of the x2 distribution should be used as test 
of fit." In a large percentage of cases to which x2 may be 
applied in biometric and biological investigations, there are 
no 'tails', that is, no small categories at the terminals. If 
we wish to avoid the assumption that at such 'tails', where 
they exist, it is legitimate to replace binomials by normal 
curves, then the P, An test can be applied. 

(vi) From my point of view, the tests are used to ascertain 
whether a reasonable graduation curve has been achieved, 
not to assert whether one or another hypothesis is true or 
false. If we narrow ourselves down to asking whether a nor- 
mal curve will reasonably graduate the material and find 
it does, are we to follow it up by asserting that either the 
sample or parent-population follows a normal distribution? 
I should say: Certainly not. I have never found a normal 
curve fit anything if there are enough observations! The as- 
tronomical data provided to prove that errors of observation 
follow normal curves are pitiably scanty, and if proper tests 
are applied usually show that they do not! The fact is that 
all these descriptions by mathematical curves in no case 
represent 'natural laws'. They have nothing in this sense 
to do with 'hypothesis' or 'reverse of hypothesis'. They 
are merely graduation curves, mathematical constructs to 
describe more or less accurately what we have observed. 

(vii) The reader will ask: "But if they do not represent laws of 
Nature, what is the value of graduation curves?" He might 
as well ask what is the value of scientific investigation! 
A good graduation curve-that is, one with an acceptable 
probability-is the only form of 'natural law', which the 
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scientific worker, be he astronomer, physicist or statistician, 
can construct. Nothing prevents its being replaced by a bet- 
ter graduation; and ever bettering graduation is the history 
of science. 

What is the use of good graduation curves? Ask the actu- 
ary! Such curves enable a mass of details to be summed up with 
reasonable probability in the knowledge of a few constants, and 
from those constants we obtain new knowledge of the properties 
of the mass. Take only the importance of a life table graduated by 
the Makeham-Gompertz curve and consider, what new knowledge 
flows from it. But after all, it is only a graduation curve and it is 
open to anyone to find a better one! If Continental statisticians in 
the bulk do indeed hold the views of Mr. Buchanan-Wollaston, 
it can only be that they have not really studied and grasped the 
fundamental literature of the subject. (Pearson 1935) 

4. FISHER RESPONDS 

R. A. Fisher was 43 when he became the director of 
the Galton Laboratory and head of the new Department 
of Eugenics, fulfilling an ambition he had nurtured since 
1919 (see Darwin to Fisher, August 7, 1919, and Fisher to 
Darwin, February 25, 1929, in Bennett 1983, pp. 70, 96- 
97). Before formally assuming his new position, Fisher 
tried to reach an accommodation with the younger Pearson 
that would have permitted Fisher to lecture on statistical 
methods, but Fisher reluctantly agreed to E. S. Pearson's 
proposal that Fisher abstain from teaching statistical the- 
ory (Fisher to E. S. Pearson, May 24, 1933, in Box 1978, 
p. 258). Fisher's relationship with E. S. Pearson quickly 
deteriorated. Fisher also found himself in an awkward 
situation regarding the continuing staff of his department, 
who remained loyal to Karl Pearson (Box 1978, pp. 260- 
261). The already difficult relations between Karl Pear- 
son and Fisher were aggravated further by the sometimes 
rocky transition. Shortly before their 1935 Nature letters, 
for example, Fisher's efforts to find space for his blood 
serological group by removing the material Karl Pearson 
left behind in his statistical and eugenic museum clearly 
irritated the elder Pearson (Fisher to K. Pearson, May 7, 
1935, and K. Pearson to Fisher, June 13, 1935, both in 
Box 1978, pp. 346-347; for a description of the museum, 
see E. S. Pearson 1938, pp. 216-217). 

Between 1933 and 1936, Fisher entered into several 
new public disputes with Neyman, Gosset, and Wishart, 
among others, about statistical theory and practice; but 
Fisher did not forget his longstanding quarrels with Karl 
Pearson. Fisher clearly resented the acclaim and support 
Pearson had received to maintain his statistical program 
while, it evidently seemed to Fisher, Pearson frustrated or 
ignored Fisher's own contributions to the theories of statis- 
tics and heredity. Their disagreements had begun during 
World War I with papers Fisher submitted to Pearson for 
publication in Biometrika concerning the distribution of 
sample correlation coefficients and the minimization of x2 
as a criterion for statistical inference (see the exchange of 
correspondence and commentary in E. S. Pearson's 1968 
work). Fisher's challenges to the method of moments and 
its use with Pearson's system of frequency curves are well 
known (Fisher 1922a, 1925b), as are Fisher's contributions 
to the use and interpretation of the x2 test (Fisher 1922b, 
1923, 1924). Fisher's (1937) infamous article continued 
his dispute with Pearson after Pearson's death; the fierce 
attack there was later repeated in Fisher (1956). 

Fisher's reference to F. R. Helmert in his letter to Na- 
ture, which was published on September 21, 1935, il- 
lustrates his practice of citing a prior authority to belit- 
tle one of Karl Pearson's contributions to mathematical 
statistics; in the context of the goodness-of-fit test, the 
reference to Helmert was misleading, but Fisher's tactic 
was not new. In fact, Helmert derived the x2 form of the 
sampling distribution of the sample variance on the basis 
of a normal population, and Karl Pearson had publicized 
Helmert's earlier derivation (Pearson 1931). Of course, 
Fisher's comments on "errors of the second kind" were 
veiled references to the Neyman-Pearson formulation of 
the hypothesis-testing problem. 

In a letter to Nature of August 23, Prof. Karl Pearson states: 
"From my point of view, the tests are used to ascertain whether 
a reasonable graduation curve has been achieved, not to assert 
whether one or another hypothesis is true or false." 

This assertion must come as a surprise to many who are famil- 
iar with Prof. Pearson's writings. It should not, however, be per- 
mitted to divert attention from the points raised in Mr. Buchanan- 
Wollaston's letter of August 3, for whatever may have been Prof. 
Pearson's original intention in introducing the term 'goodness-of- 
fit', and in publishing a table of the distribution of x2 (the theoret- 
ical form of which had been previously determined by Helmert in 
1875), it is certain that the interest of statistical tests for scientific 
workers depends entirely from their use in rejecting hypotheses 
which are thereby judged to be incompatible with the observa- 
tions. 

It is certain, too, from many passages which could be cited 
from Prof. Pearson's own writings, that he has himself used the 
x2 test, not only in connection with the graduation of frequency 
curves, but also as a means of testing the truth of theories or 
hypotheses. As one example, I may mention an appendix of five 
pages entitled "On the Test of Goodness of Fit of Observation 
to Theory in Mendelian Experiments" (Biometrika, 9, pp. 309- 
314). In this paper he insists very clearly, and quite in accordance 
with modem usage, taking the extreme case P = 0, that either the 
theory or the observations must be rejected. 

Mr. Buchanan-Wollaston's point that the x2 test, like the 
other tests of significance, is cogent for the rejection of hypothe- 
ses, but, in the opposite case, by no means cogent for their accep- 
tance, deserves to be widely appreciated. For the logical fallacy 
of believing that a hypothesis has been proved to be true, merely 
because it is not contradicted by the available facts, has no more 
right to insinuate itself in statistical than in other kinds of scientific 
reasoning. Yet it does so only too frequently. Indeed, the "error 
of accepting an hypothesis when it is false" has been specially 
named by some writers "errors of the second kind". It would, 
therefore, add greatly to the clarity with which the tests of sig- 
nificance are regarded if it were generally understood that tests 
of significance, when used accurately, are capable of rejecting or 
invalidating hypotheses, in so far as these are contradicted by the 
data; but that they are never capable of establishing them as cer- 
tainly true. In fact that "errors of the second kind" are committed 
only by those who misunderstand the nature and application of 
tests of significance. (Fisher 1935) 

5. PEARSON'S SECOND RESPONSE 

It did not take Karl Pearson long to react to Fisher's 
criticism: Pearson's second letter appeared in Nature on 
October 5, 1935. Here he reemphasized the distinction 
between judging the value of a proposed model and the 
acceptance or rejection of hypotheses. Pearson's argument 
that scientific law was merely a convenient construct that 
adequately summarized our experience retraced a philo- 
sophical position he had propounded half a century before 
(K. Pearson 1892). 
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Table 1. Jeans's Star Eccentricity Distribution From Pearson's 
Second Response (1935b) 

Theory for 116 Theory for 83 
Eccentricity Observed stars, e < 1 stars, e < 0.06 

.00- .01 04.5) 9 

.01- .02 115 5 

.02- .03 9 6.0 12 

.03- .04 14 8.0 16 

.04- .05 24 10.5 21 

.05- .06 25 13.0 25 

.06- .07 6 15.0 

.07- .08 13 17.0 

.08- .09 7 20.0 

.09-1.00 7 22.0 

The example Pearson cites in this letter deals with J. H. 
Jeans's (1935) use of an investigation of the orbital motions 
of binary stars to argue for a long (1013 years) rather than 
a short (1010 or 1011 years) time scale for the age of the 
universe. Jeans claimed that under conditions consistent 
with the long time scale (and inconsistent with the short 
time scale), "the number of orbits of binary stars whose 
eccentricity is less than e will be proportional simply to 
e" (Jeans 1935). Jeans concluded that the agreement 
between the observed distribution of orbital eccentricity 
of 116 binary stars and his derived distribution was "far 
too good to be accidental," thus providing "strong evidence 
in favor of the long time scale" (Jeans 1935). 

Prof. Fisher is an apt controversialist, but he knows as well 
as I do that what I understand by graduation is not confined to 
curves; that I should term graduation the fitting of a binomial to a 
series of observations, or the determining whether a system of cor- 
relation coefficients could be reasonably supposed to have arisen 
from samples of material drawn from a population with a given 
correlation coefficient. The difference between Prof. Fisher and 
myself lies in the use (and abuse) of the acceptance and rejection 
of 'hypotheses'. There is only one case in which an hypothesis 
can be definitely rejected, namely when its probability is zero. 
He cites a case which I criticized in the paper he refers to, in 
which two recessive (say) had produced a dominant, and theory 
was absolutely contradicted. It did not require an application of 
the (P, x2) test to assert that either theory or observations must be 
rejected! I merely showed that the (P, x2) test did not fail in this 
case. But let us look into what actually happens, and I cannot do 
better than illustrate it on some statistics provided by Sir James 
Jeans in Nature of September 14, 1935 (p. 432). He is compar- 
ing the eccentricities of visual binaries, 116 in number, against a 
theory of equipartition (not a curve, but frequencies are consid- 
ered). His data expressed by a frequency series run as follows: 
[Pearson's table is reproduced as Table 1]. 

If the P, x2 test be applied to the total 1 16 binaries, we have 
P < 0.000, 0005. On the other hand, if it be applied to the 83 
stars of lowest eccentricity, P = 0.79. In neither case can you 
say the hypothesis is true or false. You reject it in the former 
case because it is a poor graduation, you say in the latter case 
that it is a reasonably good graduation because 79 percent of 
random samples would, were the "hypothesis" true, give a worse 
result than the observations do. But in accepting it as a working 
graduation, you do not assert its truth any more than you assert the 
falsity of the hypothesis applied to the whole 1 16 stars; you merely 
say the latter case is a bad graduation, and try for a better. Had 
Sir James Jeans taken all stars with eccentricity < 0.07 instead of 
< 0.06, he would have found P = 0.1l05, and if he had proceeded 
to e <0 0.8, the result would have been P = 0.00001, that is, he 
might have got a worse sample in 100,000 trials. Actually he gives 

his reasons for cutting off the higher eccentricities. With them I 
am not concerned, although the exact cutting off at e = 0.06 is not 
discussed; the difficulty of detecting high eccentricity binaries and 
of then determining their orbits may account for the irregularity 
of the last four frequency entries, as he holds, or there may be 
other reasons why the falling off occurs at e = 0.06. Hypotheses 
nonfingo! 

Now Prof. Fisher refers to rejecting hypotheses as a function 
of the P, x2 method, and of accepting them as a logical fallacy. 
I have in my letter of August 24 stated that the tests are there 
to ascertain whether a reasonable graduation has been reached; 
not to assert whether one or another hypothesis is true or false. 
We should accept Sir James Jeans's equipartition as a reasonable 
graduation for the observed binaries e < 0.06 (P = 0.79) and 
reject it as a graduation for the observed binaries e < 0.08 (P = 
0.000, 01). It is not for statisticians to say whether an hypothesis 
is false except when P = 0. All that they can legitimately say 
is that it gives a poor graduation. In particular, it is very unwise 
in my opinion to form tables which provide only the values of 
P = 0.01 and P = 0.05, and consider 'hypotheses' which give a 
value of P < 0.01 as 'false', and those with a value between 0.01 
and 0.05 as 'doubtful', and for the rest of the scale of P have no 
descriptive category, for you must not say that such values prove 
hypotheses to be true. Hence I repeat my assertion' in the face of 
all the authority of Prof. Fisher and his followers, that all the P, x2 
test asertains is goodness of graduation, and I hold that 'goodness' 
of graduation is relative to the nature of the material investigated, 
our experience of similar material and the purpose to which we 
intend to put our graduation. The value of P at which we consider 
goodness or badness of graduation starts cannot be fixed without 
regard to the special problem under consideration. 

There seems somewhere a logical fallacy in the position of 
both Prof. Fisher and Mr. Buchanan-Wollaston. They both ap- 
parently assert that the P, x2 test enables one to say an hypothesis 
is false, yet never to say that an hypothesis is true, but if an hy- 
pothesis be false, its reverse must be true. If you assert that the 
hypothesis that a sample is drawn from a normal curve is false, 
the reverse hypothesis that it is not drawn from a normal curve 
must be true. As a matter of fact, the P, x2 has only measured 
its 'goodness of fit' by a probability coefficient, and it is as idle 
to say as a result of it, that the hypothesis is 'false', as that the 
reverse of it is 'true'. The only exception to this rule is when 
the observations show the existence of individuals in a frequency 
class which the hypothesis asserts cannot exist. 

The 'laws of Nature' are only constructs of our minds; none 
of them can be asserted to be true or to be false, they are good 
in so far as they give good fits to our observations of Nature, and 
are liable at any time to be replaced by a better 'fit', that is, by a 
construct giving a better graduation. 

Pearson's use of Newton's famous injunction to make 
(or feign) no hypotheses ("Hypotheses non fingo!") is a 
characteristic rhetorical flourish. By implication at least, 
Pearson places his "proper" approach to statistical tests of 
hypotheses within the inductivist tradition celebrated in 
their philosophical pronouncements by British scientists 
since Newton. (For a recent commentary sympathetic to 
this philosophical position, see Achinstein 1991.) 

6. DISCUSSION 

How does the x2 test measure goodness-of-fit? Here 
Buchanan-Wollaston makes an obvious point. Assuming 
that the data do not lead to rejection of the hypothesized 
model, Buchanan-Wollaston observed that any model in 
the infinite set of all possible models that yields an ac- 
ceptable value of the test criterion "fits." Specifically, he 
suggested that "acceptable" models are those that yield 
values of the test statistic near the mode of the x2 distri- 
bution. (If the test is based on M df, the mode is located 
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at v - 2, v > 2.) But the choice of one of these models 
as correct is arbitrary, particularly if the sole justification 
for the choice is the failure to reject it as unacceptable by 
applying the x2 test. In short, Pearson's test is for lack 
of fit of the proposed model, and the conclusion that a 
hypothesized model fits well is logically unjustified when 
the test criterion has not attained statistical significance. 
Buchanan-Wollaston then extended this criticism to all 
statistical tests. 

To this complaint, Karl Pearson offered small comfort. 
Pearson observed that his test criterion is a measure of the 
adequacy of some theoretical mathematical model for the 
observed data, not a criterion of truth. To drive this point 
home, Pearson referred to his investigation of what we now 
call the power of his test; his example is the low power of 
the test to discriminate between a normal and a uniform 
model when the sample size is small. Pearson's logical 
argument for goodness of fit is simply that in sufficiently 
large samples, the power of the x2 test can suggest when a 
hypothesized mathematical form adequately describes the 
sample; in appropriate circumstances, this model may then 
be regarded as a reasonable mathematical description of 
the phenomenon that generated the sample. In Pearson's 
view, this second inferential step was logical, not statis- 
tical. (This is even more evident in Pearson's argument 
with Fisher over the correct degrees for freedom for the 
x2 test.) Such mathematical descriptions, models, or grad- 
uations are the proper objects of scientific investigations, 
and proper use of the x2 test can lead to increasingly better 
theoretical descriptions of the phenomenon of interest. 

Where does the normal distribution fit into all of this? 
Pearson reacted to Buchanan-Wollaston's claim that the 
success of British statistical methods could be attributed 
to the prevalence in nature of distributions similar to the 
Gaussian rather than any peculiar virtue of the methods 
themselves by making two observations. First, Pearson 
reminded his readers that the only link between the x2 
test and normality was his use of a normal approximation 
to derive the theoretical distribution of the test criterion; 
the test itself could be applied to any distribution, con- 
tinuous or discrete. Second, Pearson noted that his test 
permitted formal investigation of a hypothesized normal 
model for the first time, and in fact this model could of- 
ten be dismissed as inadequate by using the test. On the 
other hand, Fisher ignored the issue of normality alto- 
gether, even though Buchanan-Wollaston's criticism was 
more legitimately aimed in his direction. Many of Fisher's 
techniques, like his development of the analysis of vari- 
ance, tacitly assumed normally distributed observations 
for the theoretical validity of his exact results, and Fisher 
was not always careful to distinguish the circumstances 
when his methods yielded an exact result from the cir- 
cumstances when his results were valid in some approxi- 
mate sense. Indeed, E. S. Pearson and W. S. Gosset had in 
1929 criticized Fisher for this confusion; see E. S. Pear- 
son (1990, pp. 95-101). Fisher's position could then be 
restated quite fairly in Buchanan-Wollaston's terms: The 
success of Fisher's methods often lay in their ready and 
valid application to data that produced sampling distri- 
butions sufficiently close to the exact sampling distribu- 
tion obtained through the argument of normality (Fisher 

1929a). 
I now turn to the general logic of statistical tests. De- 

spite their other differences, it is clear that both Pearson 
and Fisher agreed that failure to reject the null hypothe- 
sis does not "prove" its truth. Of course, Fisher said so 
directly. In his first response, Pearson observed that the 
model that best fits the sample is not necessarily the best 
representation of the parent population, and again that with 
small samples one cannot choose between very different 
population models by using the x2 test. Almost obscured 
by the polemical hyperbole of his second response is Pear- 
son's assertion that the only hypothesis proved true by a 
statistical test is the negation of a hypothesis according to 
which the observed sample outcome has zero probability. 
Philosophically, Pearson preferred to avoid the question of 
truth completely, but his position here is compatible with 
Fisher's statement that "tests of significance, when used 
accurately, ... are never capable of establishing hypothe- 
ses as certainly true" (Fisher 1935, p. 474). The difference 
between the two statisticians and Buchanan-Wollaston is 
Buchanan-Wollaston's conclusion that this logic makes 
statistical tests "quite useless" for the purpose of "sci- 
entific and practical interest" (Buchanan-Wollaston 1935, 
p. 182). 

Of particular statistical interest is that both Karl Pear- 
son and Fisher refused to interpret the results of statistical 
tests within a relative-frequency context for errors asso- 
ciated with a decision that was based on the sample. To 
a considerable extent, and for obvious reasons, the tradi- 
tion of the classical test of significance shaped the form 
and interpretation of statistical tests adopted by the two 
men. Working in this tradition, Pearson and Fisher stated 
only one hypothesis-the hypothesis tested, or our null 
hypothesis-in their statistical tests, because the implicit 
alternative was simply the negation of this hypothesis. 
(This point was emphasized in the criticism of Edwards 
1992, p. 177; Jeffreys 1961, p. 377.) This null hypothesis, 
however, is often treated more broadly than a hypothesis 
limited to the values of some unknown parameters of inter- 
est. In such applications, elements of the sampling model 
are conceived as part of the hypothesis being tested rather 
than as conditions necessary for the statistical test. The 
differences between the "Karlovingian" and "Piscatorial" 
approaches (the terms are George Udny Yule's) and the 
emerging Neyman-Pearson paradigm can be understood 
if we look briefly at other comments on statistical tests 
made by the two statisticians. 

Fisher's view of tests of significance begins with his 
insistence on a nonsampling interpretation for the signifi- 
cance level of the test. Several years before his 1935 letter 
to Nature, Fisher had explained that an investigator's use 
of the .05 level of significance in statistical tests "does not 
mean that he allows himself to be deceived once in every 
twenty experiments. The test of significance only tells 
him what to ignore, namely all experiments in which sig- 
nificant results are not obtained" (Fisher 1929b, p. 191). 
Because Fisher advises us to ignore experimental results 
when the level of significance has not been attained, it is 
obvious that one never accepts the null hypothesis. This, 
then, is the explanation for Fisher's bald assertion in his 
Nature letter that "errors of the second kind" are corn- 
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mitted only by those who misunderstand the nature and 
application of tests of significance. 

Characteristically, however, Fisher's own position in the 
1920s and 1930s was not free of ambiguity. For example, 
immediately after his admonition to ignore the results of 
nonsignificant experiments (Fisher 1929b) Fisher added 
that "he [the investigator] should only claim that a phe- 
nomenon is experimentally demonstrated when he knows 
how to design an experiment so that it will rarely fail to give 
a significant result" (p. 191). From our post-Neyman- 
Pearson perspective, this injunction can be interpreted as 
Fisher's recognition that a framework for statistical tests 
that admits the possibility of Type II errors exists. But 
Fisher's call for experimental designs with sufficient statis- 
tical power does not require such a logical framework, and 
such an interpretation is certainly consistent with Fisher's 
more clearly stated argument near the end of his life. Thus 
Fisher (1973) pronounced "a test of significance contains 
no criterion for 'accepting' a hypothesis" (p. 45). 

In later statements of his position, Fisher stressed the 
context of scientific research for statistical tests; in this 
context, Fisher linked the significance level of a statis- 
tical test to the null hypothesis tested rather than to a 
decision framework grou.nded in repeated sampling from 
some specified population. "A typical test of significance 
is based on a probability statement derived from the hy- 
pothesis to be tested [our null hypothesis], and therefore 
leads to no probability statement in the real world, but to a 
change in the investigator's attitude toward the hypothesis 
under consideration" (Fisher to N. Keyfitz, November 21, 
1955, in Bennett 1990, p. 186). Fisher (1973) emphasized 
this point. In contrast to industrial settings, in which an 
interpretation of the significance level in terms of repeated 
sampling may be sensible, Fisher insists that in scientific 
applications, "the only populations that can be referred to 
in a test of significance have no objective reality, being 
exclusively the product of the statistician's imagination 
through the hypotheses he has decided to test" (Fisher 
1956, p. 77; 1973, p. 81). To Fisher, the significance level 
of a statistical test served as a "well-defined measure of re- 
luctance to the acceptance [!]" of the null hypothesis tested 
(Fisher 1956, p. 44), a "measure of the rational grounds for 
the disbelief' in the null hypothesis that the statistical tests 
"engenders" in rational minds (Fisher 1973, p. 46). As a 
measure of reluctance applied to the null hypothesis rather 
than a probability that is based on any meaningful model 
of repeated sampling, the significance level connotes no 
probability of erroneous decisions due to rejecting or ac- 
cepting the null hypothesis. Moreover, Fisher observed 
that the scientific context of a statistical test often leads 
the investigator to test a null hypothesis he or she believes 
is false. In such circumstances, the significance level fails 
to correspond to the probability of an erroneous decision 
to reject the null hypothesis, "supposing such a phrase to 
have any meaning" (Fisher 1956, p. 42; 1973, p. 45; see 
also the useful discussion of Fisherian significance tests 
by Seidenfeld 1979, pp. 70-102). 

In Fisher's later criticism of the Neyman-Pearson the- 
ory of testing hypotheses, he would claim that "in fact no 
scientific worker has a fixed level of significance at which 
from year to year, and in all circumstances, he rejects hy- 

potheses" to attack the relative frequency interpretation 
of the significance level of a statistical test (Fisher 1956, 
p.42; 1973, p. 45). Yet as R. L. Plackett and G. A. Barnard 
noted in their commentary in the work of E. S. Pearson 
(1990, p. 116), Fisher (1925a) had encouraged the practice 
of fixed-level tests of significance by Fisher's form of the 
chi-squared and t tables, in which critical values of these 
distributions are given for fixed tail probabilities. Thus 
Karl Pearson (1935b) could criticize Fisher's presentation 
of these tabled quantiles as a de facto (and inappropriate) 
decision rule for statistical tests in language that antici- 
pated Fisher's verbal assaults on Neyman-Pearson theory. 

In his letters, Karl Pearson advanced a view of statistical 
tests grounded in the philosophical framework he erected 
for scientific investigations before he began his statistical 
career and an approach to statistical inference that Pearson 
often explicitly or implicitly expressed in terms of "inverse 
probabilities." According to Pearson, scientists are not in 
the business of searching for truth; rather, they seek to 
construct verbal or mathematical summaries of relevant 
perceptual data. These mental constructs and concepts 
are the material of science, whereas the scientific method 
consists of "the careful and often laborious classification" 
of sense impressions, the comparison "of their relation- 
ships and sequences," and at last "the discovery by aid of 
the disciplined imagination of a brief statement orformula 
which in a few words resumes the whole range of facts" 
(Pearson 1892, pp. 92-93). These scientific formulas "de- 
scribe, they never explain the routine of our perceptions, 
the sense-impressions we project into an 'outside world" 
(Pearson 1892, p. 119). Pearson translated this philosoph- 
ical predisposition into a representational structure in his 
statistical investigations-the goal was an adequate dis- 
tributional description of the observed data. Once this 
descriptive model was achieved, the mathematical impli- 
cations of the model could be used to draw structural or 
relational inferences about the phenomenon represented 
by the model. For example, the correlation coefficient de- 
termined from a bivariate distribution fitted to the heights 
of fathers and sons could be used to describe the process 
of heredity (and make predictions and draw conclusions 
about it) without any specification of a biological mecha- 
nism. This approach defined the biometric investigations 
undertaken by W. F. R. Weldon and Karl Pearson (Norton 
1975). As an intellectual construct, the descriptive model 
had no claim to truth; as Pearson concluded his second 
letter, such models "are good in so far as they give good 
fits to our observations of Nature" (Pearson 1935b). (Al- 
though Pearson rejected explanation as a goal of statistical 
models, Fisher was uncharacteristically quiet on the mat- 
ter of models; see Lehmann 1990. The implications of 
his own scientific work suggest that Fisher did not share 
Pearson's extreme position.) 

Compared with the elaborate mathematical structures he 
introduced to represent data, Karl Pearson's probabilistic 
framework for statistical inference seems underdeveloped. 
Jeifreys (1961) observed that although Pearson "always 
maintained the principle of inverse probability, . .. he sel- 
dom used it in actual applications, and usually presented 
his results in a form that appears to identify a probability 
with a frequency" (p. 385). Indeed, Jeffreys claimed that 
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Pearson is unique among advocates for Bayesian probabil- 
ity calculations because Pearson insisted that prior prob- 
ability distributions have a frequency interpretation that 
is based on previous experience (Jeffreys 1961, p. 404). 
Pearson's attachment to inverse probability antedates his 
statistical investigations, as the discussion of scientific in- 
duction and the Bayes-Laplace "rule of succession" in 
Pearson's (1892) work demonstrates. There Pearson cited 
Edgeworth (1884) to provide an experiential justification 
for uniform prior distributions, whereas Pearson himself 
argued that an observed data sequence can be augmented 
by other data sequences from analogous phenomena in 
scientific applications of the rule (Pearson 1892, pp. 177- 
178.) As Pearson began his statistical work, he extended 
his interpretation of probability as a degree of belief, mea- 
sured "in a rough and approximate way by the statistics 
of past occurrence" (Pearson 1941, p. 93). On the other 
hand, the level of inference in Pearson's early statistical 
work is restricted to comparing computed values of es- 
timated parameters with their probable errors. But Pear- 
son's sense of the theory of probable errors had a Bayesian 
spin, and Pearson's later formulation of inverse probability 
can be understood as his attempt to counter the criticism 
of inverse probability calculations advanced by Boole and 
Venn, influenced in part by Edgeworth's counterargument 
for prior distributions on the basis of experience. Pearson 
seems to have followed Edgeworth too in developing his 
practical approach to tests of significance (Pearson 1941; 
Stigler 1986, pp. 327-329, noted Edgeworth's importance 
in the development of Pearson's early statistical attitudes). 

Although Jeffreys is correct that Pearson often offered 
what seems to be a frequentist interpretation of an observed 
significance level, as when Pearson (1935b) explained that 
"P = 0.79" in his second letter with "79 percent of random 
samples would, were the 'hypothesis' true, give a worse 
result than the observations do" (p. 550). Pearson's inter- 
pretation was based on random sampling at least as hy- 
pothetical as Fisher's. Pearson appeared to adopt random 
sampling as a convenient framework for examining the 
observed data rather than the actual mechanism by which 
the data were obtained. Random sampling provided Pear- 
son the chance framework for computing an "objective" 
probability, with a corresponding frequency interpretation. 
This probability, in turn, approximated the degree of belief 
appropriate for outcomes of future observations like those 
in the sample, In effect, the observed sample data were the 
sequence of past sense impressions on which predictions 
of the future were to be based, and the observed objec- 
tive probability was taken "as the basis of belief as to the 
future" (Pearson 1941, p. 96). In terms of a test of sig- 
nificance, this distinction appears to make the assumption 
of random sampling part of the hypothesis under test in- 
stead of a necessary condition for the statistical test. Pear- 
son could and did apply statistical tests to data that were 
not the product of random sampling or where no sensi- 
ble sampling context existed. Thus Pearson used random 
sampling as the logical basis for computing a probability 
P in his test for goodness of fit to judge the probability of 
the observed data, thereby obtaining a measure of eviden- 
tial support for the hypothesized model without an inverse 
probability calculation. Given his philosophy of science, 

it is not surprising that Pearson also emphasized that dif- 
ferences in the goodness-of-fit test criterion measured the 
relative descriptive adequacy of competing scientific mod- 
els for the observed data. As he argued (Pearson 1936), 
"the P, x2 criterion gives if not an absolutely accurate, still 
for practical purposes an excellent measure of what most 
statisticians need to know, namely the relative superiority 
of one graduating curve over another" (p. 49). Of course, 
differences in values of x2 computed from the same sam- 
ple data for different models correspond asymptotically 
to differences of the multimonial log-likelihood, and thus 
such comparisons produce measures of relative support 
for the various models considered in the sense of Hacking 
(1965) and Edwards (1992). (For examples of this use 
of X2 by Karl Pearson and Fisher, see Fisher 1925a, pp. 
81-82; Pearson 1936, p. 59.) 

Although Fisher and Karl Pearson regarded the signifi- 
cance level attained by a statistical test to be hypothetical 
probability, Karl Pearson and the other two Nature corre- 
spondents disagreed completely on which outcomes of the 
test supported the hypothesized model in the test for good- 
ness of fit. Buchanan-Wollaston looked to the center of the 
sampling distribution of the x2 statistic for values that sup- 
ported the hypothesized model; his argument that values of 
the test statistic near the center of the x2 distribution offer 
positive evidence for the hypothesized model anticipated 
the position advanced by Berkson (1942). As is clear, 
Fisher argued that tests of significance produce no support 
for the null hypothesis under any circumstance. Regarding 
the test for goodness of fit, Fisher would state the follow- 
ing in every edition of Fisher (1925a): "If P is between 
.1 and .9, there is no reason to suspect the hypothesis be- 
ing tested" (p.7 1). Pearson's sampling framework was the 
multivariate normal approximation to the multinomial cell 
frequencies, in which the more probable sample outcomes 
were those nearer the cell expectations. In Pearson's ex- 
position of the x2 test, the single most probable sample 
outcome was one in which the cell frequencies equaled 
their expectations exactly, because this sample exhibited 
the highest multivariate probability density possible. This 
most probable sample offered the maximum support for 
the hypothetical model, with x2 = 0 and P = 1. Samples 
that produced greater discrepancies between observed and 
expected cell frequencies were less probable according to 
the null model and thus provided less evidential support 
for it; such samples yielded increasingly large values of 
the test statistic and smaller values of Pearson's probability 
coefficient, P. For Pearson, values of his criterion closest 
to zero, with corresponding values of P nearest to unity, 
indicated the highest degree of support for the hypothe- 
sized model, and Pearson frequently attached the value of 
P to the hypothesis tested, which is consistent with this 
sense of support. Fisher (1925a, p. 80) argued that this 
belief was fallacious, because if the hypothesized model 
were correct a value of P = .999 was just as improbable 
as P = .001 and just as surely would lead to rejection of 
the model. Pearson, however, would never have rejected 
a hypothetical model because the data were too good to 
be true, and he clearly prized values of P near unity in 
applications of his test. (See Pearson 1932, pp. 358-359, 
for examples; Plackett 1983 briefly discussed Pearson's 
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interpretation of P; Seidenfeld 1979, pp. 84-86, argued 
for an interpretation consistent with Pearson's position.) 

In their Nature letters, neither Pearson nor Fisher ad- 
dressed Buchanan-Wollaston's complaint that statistical 
tests were scientifically irrelevant because by construction 
they did not produce "appropriate evidence for affirmative 
conclusions" (Berkson 1942, p. 326). Now Buchanan- 
Wollaston certainly did not reject the use of statistical 
tests, as his own later work demonstrates. Shortly before 
his challenge to Pearson and Fisher in Nature, Buchanan- 
Wollaston presented his own approach to statistical tests 
(Buchanan-Wollaston 1935b): He proposed that the null 
hypothesis in statistical tests "should be such that it is 
acceptable on apriori grounds if the data do not show it 
unlikely to be true" (p. 254). From the multitude of possi- 
ble null hypotheses that might have accounted for the data, 
the "chosen hypothesis is merely that which is considered 
by the scientist to be the simplest and most acceptable" 
(Buchanan-Wollaston 1935b, p. 254). By asserting a non- 
statistical justification of the null hypothesis in terms of 
its scientific utility, Buchanan-Wollaston argued that the 
result of some statistical test still served a limited scien- 
tific purpose when it proved to be nonsignificant in the 
statistical sense. Unlike Fisher, Buchanan-Wollaston did 
not want to ignore sample outcomes that did not attain 
statistical significance. Unlike Karl Pearson, Buchanan- 
Wollaston was reluctant to banish the search for truth from 
the scientific enterprise. The apparent conflict between 
the objectives of statistical tests and scientific inference 
prompted Buchanan-Wollaston's appeal to Pearson and 
Fisher. Despite occasional assertions that statistical infer- 
ence and scientific inference are identical, this conundrum 
still continues to shape the dialogue between statisticians 
and scientists. 

[Received September 1992. Revised May 1993.] 
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