Intermediate Microeconomics — Week 14

Professor Boyd November 22, 2022

Final Date and Time. According to the latest update from Space &
Scheduling, our final will be on Thursday, December 8 at Noon here in
our regular classroom.

12.1.5 The Coordination Game II: Nash Equilibria Repeated

The resulting Nash equilibria are the same, but now the players care
which equilibrium they get. In the original version, both players had a
payoff of 20 in each equilibrium. Here player one gets 20 in the (L, L)
equilibria, but only 10 in the (R, R) equilibria.

The situation is reversed for player two. This creates a conflict if they
attempt to decide on an equilibrium ahead of time. Player one prefers
(L, L), player two prefers (R, R).

How can they resolve this conflict?

Coordination Game II: Nash Equilibrium

Player One
Player Two Left Right
*
20 0
Left
10 0
b
*
Right 0 10
0 20
b
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12.1.6 The Coordination Game Il: Side Payments New Slide

During discussion, one of you suggested that one of the players offer
the other $5 to agree to the first player’s preferred outcome. In game
theory, this is usually called a side payment.

This would work by having player one offer player two $5 in exchange
for agreeing to choose Left. We didn’t specify when the payment is
made.

Suppose the payment is made prior to the game being played. The
payment terminates discussion and both players move immediately after.
We include the side payment in the payoffs, which changes the game
matrix. The payoffs now look like this.

Coordination Game IlI: Side Payments

Player One
Player Two Left Right
*
15 -5
Left
15 5
>k
*
-5
Right >
5 25
>k

There are still two Nash equilibria, (L,L) and (R, R). However, player
one expects player two to choose Left due to their agreement and imme-
diately chooses the best response, Left, once they have an agreement.
In turn, player two expects that player one will choose Left, and has best
response Left as a result. The agreement is self-enforcing. The outcome
of the new game following the agreement is that both players choose left
and get $15 in the new version of the game.
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12.1.7 The Coordination Game Il: Randomization Expanded

There’s another way to get to a fair outcome without changing the
game matrix.

Another way people actually deal with such conflicts is to randomize
in a fair way. For example, player one could flip a fair coin (i.e., that flips
to “heads” half the time, and “tails” half the time). Player two calls it.

If player two’s call is correct, she chooses the equilibrium they coordi-
nate on. She prefers (R, R), where her payoff is $20 rather than $10, and
chooses that. If coin is tails, player one chooses. He prefers (L, L) where
his payoff is $20 rather than $10, and chooses that.

In this augmented version of the game, there is a 50% chance the
players will play (L, L), and a 50% chance they pick (R, R).

Then player one has a 50% chance of getting 20 and a 50% chance of
getting payoff 10. Player two is in the exact same situation, with a 50%
chance of getting 20 and a 50% chance of getting 10. The situations
are exactly the same. The fact that they have the same chance of each
payoff makes it fair.

In the literature on the economics of taxation, there are two basic
concepts of fairness: horizontal equity and vertical equity. In the tax
context, horizontal equity means that those in the same situation pay
the same tax. Vertical equity means that those in different situations
may pay different taxes. The concept is usually applied to the tax unit,
which may be a family.

The randomization here is an example of horizontal equity.
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12.1.8 Evaluating Random Payoffs: Expected Payoff

The fact that the random payoffs received by players one and two could
be described exactly the same way conforms with our notions of fairness.

But what if no such description is possible? That would happen if
player faced payoffs of 30 and O while player two continued to receive
either 20 or 10.

One way to approach this is to consider the expected payoff. We
compute the expected payoff by multiplying the probability of each
outcome by the payoff. Then we add to obtain the expected payoff.
In probability terms, we have calculated the expectation of the random
payoff.

In our revised example, the expected payoff for player one is
0.50 x 30+ 0.50x 0 =15

(here 0.50 = 50%). The expected payoff for player two is

0.50 x 20 + 0.50 x 10 = 15.

Here the expected payoffs are the same, creating some degree of
fairness.
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12.1.9 Expected Utility

Another method is to use the utility values of the payoffs rather than
monetary values. This yields expected utility. It is a useful way of
discussing risks and how consumers and producers respond to them. We
could just assume the payoffs are in utility terms.

This doesn’t completely solve the problem. We usually think of utility
as being unobservable and not comparable between consumers. If the
payoffs were in utility terms, player one’s payoffs would be in player one’s
utility, and player two’s payoffs in player two’s utility. Then a comparison
of the expected utilities would be comparing player one’s utility with
player two’s utility, which is generally invalid.

The problem is that the same payoffs that give player one utility levels
of 10 and 20 may give player two utility payoffs of 5 and 20. So utility
payoffs of 10 and 20 for both would represent different actual payoffs.
Then expected utilities would be the same, but putting player one in
player two’s shoes would lead to a change in expected utility, not the
same expected utility.

If the consumers agree that the expected payoff is what matters, we
have no problem with the comparison. Otherwise, there may still be
conflict even though the expected utility is the same in the two cases.
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12.2 Rock, Paper, Scissors

One well-known game is “Rock, Paper, Scissors”. The rules determining
the winner are well-known, Paper covers Rock, Scissors cut Paper, Rock
breaks Scissors. The players get a +1 payoff for winning, —1 for losing,

and zero for ties. We express this as a game matrix.

Rock, Paper, Scissors

One .
Two Rock Paper Scissors
0 +1 —1
Rock 0 1 1
—1 0 +1
Paper
b +1 0 —1
. +1 —1 0
Scissors
—1 +1 0
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12.2.1 Rock, Paper, Scissors: Best Responses

Now that we’ve marked the best responses, we can see that there is no
Nash equilibrium. There are six boxes with a single star, indicating they
are best responses for one player or the other. No box has two starts.
There are no choices that are mutual best responses.

Rock, Paper, Scissors

One .
Two Rock Paper Scissors
0 +1 —1
Rock 0 1 1
—1 0 +1
Paper
b +1 0 —1
>k
. +1 —1 0
Scissors
—1 +1 0
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12.2.2 Nash’s Solution: Randomization

Nash'’s solution to this problem is to change what we mean by a strategy
to include random strategies. The strategies (= moves here) that are
initially defined are called pure strategies. If you pick one, you use
it with certainty—100% probability. However, he suggested assigning
probabilities to the pure strategies to form random or mixed strategies.
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12.2.3 Probability Distributions
The probabilities must obey two rules.

1. Each pure strategies is assigned a probability from zero (0%) to one
(100%).

2. When added over all possible pure strategies, the probabilities must
sum to one (100%).

Such probabilities describe a probability distribution.

Rule two means that some strategy will be chosen. By rule one, it is
possible that some strategy may never be chosen, may have a probability
of 0
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12.2.4 Mixed Strategies as Probability Distributions

We will often write random strategies by listing the probabilities of each
pure strategy in the order given. Here, the pure strategies are (Rock,
Paper, Scissors), so (.5,.2,.3) means the random strategy that plays
Rock 50% of the time, Paper 20% of the time and Scissors 30% of the
time.

The pure strategies can also be written this way. The strategy (1, 0, 0)
is Rock, (0, 1,0) is Paper, and (0,0, 1) is Scissors.
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12.2.5 The Language of Probability

When talking about probability, we use the term event to refer to a
something that can possibly occur. Nash suggested we regard the possible
pure strategies—Rock, Paper, and Scissors—as events. Our probability
distribution describes the probability of each event, the probability that
each pure strategy is chosen.

We compare strategies, both mixed and pure, by computing their
expected payoffs. That introduces a complication. Both sides might be
using mixed strategies. How do we compute the probabilities of strategy
pairs such as (Rock,Paper) or (Scissors,Rock) if all we know is that
player one is playing (0.2, 0.3, 0.5) while player two plays (0.6,0.2,0.2)?

If the player make their moves simultaneously, what player one chooses
doesn't affect what player two does, and vice-versa. In probability terms,
the probability of the event that player one plays Rock does not depend
on the probability that player two plays Scissors (or anything else).

Such events are called independent.
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12.2.6 Conditional Probability

One important concept in probability is conditional probability. We
write the probability of event A, if event B occurs as P(A|B) this is the
probability of A conditional on B. The formula for conditional probability
is

P(A N B)
P(A|B) = @

This is illustrated in the diagram. Events A (red) and B (blue) can both
occur together. That is, their intersection is non-empty. The conditional
probability is the chance that A occurs if B occurs. The probability that
both occur is P(A N B), and the conditional probability is the fraction of
B’s probability P(B) where both occur. l.e., P(A N B)/P(B).

Conditional Probability
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12.2.7 Independent Events

It is common to think of events as being sets. Then when A and B are
events, then A N B is the event where both A and B occur. When the
probabilities P(-) obey

P(ANB) = P(A) - P(B)

for all events A and B, the events are called independent.
Now if A and B are independent,
P(ANB) P(A)-P(B)

P(A|B) = PE) = P@) = P(A).

In that case, as far as the probability of A is concerned, it irrelevant
whether or not B occurs.
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12.2.8 Mixed Strategy vs. Mixed Strategy

We're almost ready to compute probabilities when both sides use mixed
strategies. We regard the randomization by player one as independent
of player two’s randomization and vice-versa. Then for each pair of pure
strategies, independence means you multiply the probabilities of each to
find the probability of the combination.

When player one is playing (0.2,0.3,0.5) while player two plays
(0.6,0.2,0.2) we can now compute the probability of the outcome
(Rock, Paper). It is 0.2 x 0.2 = 0.04. Similarly, the probability of
(Scissors, Rock) is 0.5 x 0.6 = 0.30.

We can then calculate expected payoffs by multiplying the product of
the probabilities together with the payoffs for any pair of strategies. Then
we add up across all the strategy pairs.
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12.2.9 Calculating Probabilities

For example, suppose player one picks (.6,.3,.1) and player two uses
(.7,.1,.2).

Player one picks Rock with probability .6. The combination (R, R)
has probability .6 x .7 = .42, the combination (R, P) has probability
.6 x .1 = .06, the combination (R, S) has probability .6 x .2 = .12. Note
that the combined probability .42 + .06 + .12 = .6, the probability that
player one chooses Rock.

Similarly, the probability that a choice of Paper by player one combines
with player two’s three pure strategies adds up to .3, and the probability
that a choice of Scissors by player one combines with player two’s three
pure strategies adds up to .1.
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12.2.10 The Probabilities Add Up

Suppose player one chooses the mixed strategy (p1,p2,Pp3) and player
two chooses (q1, g2, q3). Let’s add the probabilities of all possible events.

Rock, Paper, Scissors: Probabilities

One
Two Rock, p1 Paper, p, | Scissors, p3
Rock, gy P1q1 P24 P3qi
Paper, q> P192 P292 P39z
Scissors, qs Pi1g3 P23 P3q3

The sums are

Total Prob = p1q71 + p192 + 193
+ P2q1 + P2q2 + P2qs
T P3d1 T P32 + P3q3
= p1(g1 + g2 + q3) + p2(g1 + g2 + q3)
+ p3(g1 + 42 + q3)
=P1+Pp2+Pps3
= 1.

When each player’s probabilities are independent, adding up all the
probabilities gives us 1, as a probability distribution should.
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12.2.11 Rock, Paper, Scissors: Nash Equilibrium |

Once we allow random strategies. The only Nash equilibrium is that
both sides play each of the possible moves with probability 1/3.

Suppose player one does this. What is player two’s best response?

If player two always chooses Rock, 1/3 of the time player one will also
choose Rock, with payoff zero. One third of the time player one chooses
scissors and loses, with payoff +1 to player two. The last third of the
time player one chooses paper and wins, so player two get —1. Player
two’s expected payoff is

(1/3) x 0+ (1/3) x (—=1) + (1/3) x (+1) = 0.

A little thought reveals that if player two always chooses scissors, or
always chooses paper, the expected payoff would still be zero. Indeed,
any mixed strategy will always give expected payoff zero!

So it seems that everything is a best response—and it is. However,

we will show that the only mutual best responses have probabilities
(1/3,1/3,1/3) vs. (1/3,1/3,1/3) for (R, P, S).
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12.2.12 Rock, Paper, Scissors: Nash Equilibrium Il

If player one uses (.4,.3,.3), i.e., Rock 40% of the time, and Scissors
and Paper 30% each, the best response is not (1/3,1/3,1/3).

Since player one picks Rock more than any other option, you can do
better by picking to beat Rock, by always picking Paper. Then you win
40% of the time, are tied 30% of the time, and lose 30% of the time for
an expected payoff of

0.4 x +1+0.3x(=1)+ 0.3 x(0) = +0.1.

In contrast, with (1/3,1/3,1/3) you get expected payoff zero the 40%
of the time your opponent actually plays Rock, payoff zero the 30% of
the time your opponent plays Scissors, and payoff zero the 30% of the
time your opponent plays Paper. This adds to zero, and is worse than
always choosing Paper.

It turns out that if your opponent chooses probabilities that are not
equal, the best response is to always use the best response to the most
likely option—Paper to Rock, Scissors to Paper, or Rock to Scissors. As
a result, only the probabilities (1/3,1/3,1/3) are mutual best responses.
This is the only Nash equilibrium for Rock, Paper, Scissors.
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12.3 Escape! A Game without an Equilibrium

There are simpler games without equilibria. One is the Escape! game.

In Escape!, there are two players, a guard and a prisoner. The prisoner
breaks out of his cell and runs out on the street. He has a choice, run left
or run right. Whichever way the prisoner goes, he turns a corner before
the guard runs out on the street.

When the guard runs out after the prisoner, he has to decide whether
to go left or right. If the guard follows the prisoner, he will eventually
catch him. The guard will be rewarded and the prisoner punished.

If the prisoner escapes, he will enjoy freedom for a while, and get a
positive payoff. The guard is not the person responsible for the prisoner’s
escape, and will not be penalized if he does not catch the prisoner.

Here’s the game matrix.

Escape!
Prisoner
Guard Left Right
—100 +50
Left
+5 0
+ —100
Right >0
0 +5




20 INTERMEDIATE MICROECONOMICS

12.3.1 No Pure Strategy Equilibrium in Escape!

The guard wants to catch the prisoner, and must go the same way to do
this. That means the guard’s best response to Left is Left, and his best
response to Right is Right.

The prisoner wants to get away, which means going the opposite way
as the guard. He must respond to the strategy Left with Right, and to the
strategy Right with Left.

Each box contains a single star, so there is no pure strategy Nash equi-
librium.

Escape! Best Responses

Prisoner
Guard Left Right
*
—-100 +50
Left
+5 0
S
*
+ —100
Right >0
0 +5
S
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12.3.2 Nash Equilibrium for Escape!

Nash (1950, 1951) showed that any game with a finite number of players
and a finite number of pure strategies must have an equilibrium, either
in pure or mixed strategies.'

The Nash equilibrium is for both players to use the strategy (.5,.5), go
left with probability 0.5, and go right with probability 0.5. As before,
we write the probabilities in the same order as the pure strategies in the
game matrix.

1 See John Nash (1950), “Equilibrium points in n-person games”, Proceedings of the National Academy
of Sciences, 36:48-49, and John Nash (1951), “Non-Cooperative Games”, Annals of Mathematics.
54:286-295.
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12.3.3 Mixed Strategies Can Make the other Player Indifferent
As is typical in mixed-strategy equilibria, the mixed strategies make the
other player indifferent between at least two pure strategies.

If the guard uses (.5,.5) and the prisoner chooses Left, the prisoner is
caught half of the time and goes free half of the time. The prisoner’s
payoff is

.5 % (=100) + .5 x (+50) = —25.

If the guard uses (.5, .5) and the prisoner chooses Right, the prisoner is
still caught half of the time and still goes free half of the time. It’s just the
other half. The prisoner’s payoff is

5 X (+50) + .5 x (=100) = —25.

Either way, the prisoner’s expected payoff is the same.

The guard is in a similar situation, but with an expected payoff of 2.5.
Try calculating it.
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12.3.4 Indifference Makes Randomization Possible

It is only when players are indifferent between using two strategies that
they are willing to randomize. They will get the same payoffs by ran-
domizing between them that they receive from either pure strategy.

Escape! has only two pure strategies for each player. By playing (.5, .5),
the guard has made the prisoner indifferent between his pure strategies,
and any randomization involving them. In particular, (.5,.5) is a best
response by the prisoner.

When the prisoner chooses (.5,.5), the guard is placed in a similar
situation, and (.5, .5) is a best response. We have mutual best responses—
Nash equilibrium.

It is only the (.5,.5) randomization that does this in Escape! If the
prisoner chose (.6, .4), the guard’s best response would be Left, with a
payoff of .6(5) = 3. Choosing Right only yields .4(5) = 2, and even
(.5,.5) yields only 2.5.
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12.3.5 Combining Probabilities

Suppose the prisoner plays the mixed strategy (p, 1T — p) and the guard
responds with (q, T—q). Of course, 0 < p,q < 1. What s the probability
of each outcome?

To find that, we can use a probability tree. It shows that the prisoner
goes left with probability p and right with probability (1 —p). Depending
on which the prisoner has chosen, the guard then goes left or right with
probabilities g or (1 — q).

When we get to the end, we multiply the probabilities along the
branches leading there to find the probabilities of each outcome.

This procedure guarantees that the numbers at the ends are probabilities—
that they are between 0 and 1 and sum to 1.
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12.3.6 Probability Tree

The tree shows the various payoffs to the prisoner and guard (prisoner
first) and the probabilities.

Escape! Probability Tree

Guard

Prisoner q ~L: (=100, +5),pq

R: (=100, +5), (1 —p)(1 —q)

If the prisoner chooses p = 0.5, the expected payoff for the guard is
2.5q + 2.5(1 — q) = 2.5.

Any choice by the guard is a best response.
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12.3.7 What if the Prisoner Favors Left?

Now suppose the prisoner has a preference for Left, and choose it with
probability p > 0.5. Referring back the probability tree, we can calculate
the guard’s expected payoft:

5pq + Op(1 —q) + 0(1 —p)g + 5(1 —p)(1 —q)
= 5pq + 5(1 —p)(1 —q)
= 5pq +5—5p—5qg + 5pq
=5—-5p+52p—1)q.

Whenp > 0.5, 2p—1 > 0, so the guard’s expected payoff is increasing
in g. It's best for the guard to choose the largest possible g, which is 1.
The guard’s best response is to always go Left.

Similarly, if the prisoner has a bias toward the right, the guard should
always pick Right to make the probability of catching the prisoner as high
as possible.

The guard is in a similar situation. Unless the guard plays (0.5, 0.5), the
prisoner will always go the opposite way as the guard’s bias.
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12.3.8 The Other Form of Escape!

There are actually two forms of Escape! In the form we’ve seen, the guard
is too slow getting out on the street to see where the prisoner went. The
guard lacks information about what the prisoner did. If the guard got
out a bit quicker, he would see the prisoner run around the corner and
could follow, eventually catching the prisoner. Rather than show this
using a game matrix, we will write the game in extensive form, using a
game tree. It's like the probability tree, but showing only the moves, the
payoffs, and the information. The nodes indicate points where a move
must be made and/or a payoff paid.

Full Information Escape

Guard

Prisoner L: (=100, +5)

R: (+50,0)

L: (+50,0)

R: (=100, +5)
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12.3.9 Extensive Form

The root node, marked P, belongs to the prisoner, who chooses either
L or R. The two subsequent nodes, which are circled, belong to the
guard, who also chooses either L or R. The circles are information sets.
They indicate that the guard can tell which node has occurred. l.e., he
saw the prisoner run around the corner. If the guard could not tell the
difference, both nodes would be in the same information set, instead of
in two different information sets. Payoffs are listed in the order the player
move, (P, G), at the ends of each branch, the terminal nodes.

When each node is in its own information set, we call the game a full
information game or perfect information game.

Full Information Escape

Guard

Prisoner L: (=100, +5)

R: (+50,0)

L: (+50,0)

R: (=100, +5)
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12.3.10 The Original Escape

In the original version of Escape, the guard couldn’t tell whether the
prisoner went left or right. We indicate that by putting them both in the
same information set.

Because the guard has no information about which way the prisoner
went, he must make the same move at both of his nodes. He cannot
condition his move on what the prisoner did. If he chooses L in response
to the prisoner’s L, he must also choose L in response to the prisoner’s
R.

Here the prisoner also lacks information about what the guard will do.
Neither side has any information about the other’s moves. We don’t
need to draw an information set for the prisoner because he only has
one node.

No Information Escape

Guard
Prisoner L: (=100, +5)
L

: (+50,0)

+50,0)

I

—100, +5)
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12.3.11 Nash Equilibrium in Full Information Escape

One way to think about the full information game is that the guard now
has four possible pure strategies. He can always (1) go left or (2) go right.
He can (3) follow the prisoner or (4) avoid the prisoner.

Following the prisoner is a dominant strategy, so the guard uses it. It
then doesn’t matter what the prisoner does. He can always go left, always
go right, or randomize. No matter what the prisoner does, he will be
caught.

Full Information Escape: Equilibrium

Guard

Prisoner L: (=100, +5)

R: (+50,0)

L: (+50,0)

R: (=100, +5)
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12.3.12 Backwards Induction

So how do we find Nash equilibria in a extensive form game? We listen
to Sherlock Holmes! According to Holmes, “In solving a problem of this
sort, the grand thing is to be able to reason backwards.”?

For extensive form games, one method of finding Nash equilibria is to
use backwards induction. We start by considering the payoffs at the
terminal nodes.

On the next page, we note with a star (*) which moves at the sub-
terminal nodes yield maximum payoff(s) for the player making the last
move. We then replace the subterminal nodes by terminal nodes with
those payoffs. Repeat this process until we reach the root node.

Let’s try it with the full information version of Escape

Full Information Escape: Beginning Backwards Induction

Guard

Prisoner L: (=100, +5)

R: (+50,0)

L: (+50,0)

R: (=100, +5)

2 Sherlock Holmes in A Study in Scarlet (Sir Arthur Conan Doyle).
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12.3.13 The Best Subterminal Moves
We've marked the best responses at each subterminal node with a star
().

We next replace the subterminal nodes by terminal nodes with those
payoffs. We then repeat this process until we reach the root node.

Full Information Escape: Best Subterminal Moves

Guard

Prisoner L*: (=100, +5%)

R: (+50,0)

L: (+50,0)

R*: (=100, +5%)
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12.3.14 Reducing the Tree

We have reduced the tree. I've indicated the guard’s moves that lead
to the new terminal payoffs. At this point, the prisoner has a choice
between a payoff of —100 and of —100.

It's not much of a choice. Any move by the prisoner, even a mixed
strategy, will yield —100 as the maximum payoff.

The Nash equilibria that backwards induction gives us have the prisoner
doing anything, and the guard following—replying to L with L and to R
with R.

Reduced Escape Tree

Prisoner Guard

L
(=100, +5%) : L*

R
(=100, +5% : R*
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12.3.15 Limitations of Backwards Induction

Backwards induction has its strengths and weaknesses. As we have
defined it, it only applies to perfect information games.

One strength is that if you take any subtree, and treat that as a game in
its own right (a subgame), the resulting equilibrium is also an equilibrium
in every subgame. Such an equilibrium is called subgame perfect.

A corresponding weakness is that backwards induction may not find
all of the Nash equilibria.
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12.3.16 Full Information Escape: Matrix Form

Let’s look at the matrix form to see if we've found all the Nash equilibria
in the full information version of Escape!

Full Information Escape!: Matrix Form

Prisoner
Guard Left Right
*
—100 +50
Left
+5 0
>k
*
+ —100
Right >0
0 +5
>k
* *
—100 —100
Follow
+5 +5
>k >k
* *
_ +50 +50
Avoid
0 0
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12.3.17 Nash Equilibria in Full Information Escape

There are two pure strategy equilibria: (L, F) and (R, F). As we've already
observed, F in response to any mixed strategy by the prisoner is also
an equilibrium. There are no other mixed strategy equilibrium because
Follow is a strictly dominant strategy for the guard.

Later, we will examine a game with full information where one of the
equilibria is not subgame perfect and cannot be found by backwards
induction.
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