I. Consider the matrix

$$A = \begin{pmatrix} 1 & 3 & 1 & 2 \\ 2 & 2 & 1 & 1 \\ 3 & 1 & 1 & 2 \end{pmatrix}.$$

- a) What is dimension of the range of A?
- *b*) Find ker $A = \{x : Ax = 0\}$.
- c) What is dimension of ker A?

Answer: We first row reduce *A* before proceeding.

$$\begin{split} \mathsf{A} &= \begin{pmatrix} \mathsf{I} & \mathsf{3} & \mathsf{I} & \mathsf{2} \\ \mathsf{2} & \mathsf{2} & \mathsf{I} & \mathsf{I} \\ \mathsf{3} & \mathsf{I} & \mathsf{I} & \mathsf{2} \end{pmatrix} \to \begin{pmatrix} \mathsf{I} & \mathsf{3} & \mathsf{I} & \mathsf{2} \\ \mathsf{0} & -\mathsf{4} & -\mathsf{I} & -\mathsf{3} \\ \mathsf{0} & -\mathsf{8} & -\mathsf{2} & -\mathsf{4} \end{pmatrix} \to \begin{pmatrix} \mathsf{I} & \mathsf{3} & \mathsf{I} & \mathsf{2} \\ \mathsf{0} & \mathsf{4} & \mathsf{I} & \mathsf{3} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{2} \end{pmatrix} \\ & \to \begin{pmatrix} \mathsf{I} & \mathsf{3} & \mathsf{I} & \mathsf{2} \\ \mathsf{0} & \mathsf{I} & \mathsf{I}/\mathsf{4} & \mathsf{3}/\mathsf{4} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{I} \end{pmatrix} \to \begin{pmatrix} \mathsf{I} & \mathsf{3} & \mathsf{I} & \mathsf{0} \\ \mathsf{0} & \mathsf{I} & \mathsf{I}/\mathsf{4} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{I} \end{pmatrix} \to \begin{pmatrix} \mathsf{I} & \mathsf{3} & \mathsf{I} & \mathsf{0} \\ \mathsf{0} & \mathsf{I} & \mathsf{I}/\mathsf{4} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{I} \end{pmatrix} \to \begin{pmatrix} \mathsf{I} & \mathsf{0} & \mathsf{I}/\mathsf{4} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{I} \end{pmatrix} . \end{split}$$

- a) From the row reduction, we see that the rank of A is three, indicating that Ax = b can always be solved. Thus all of \mathbb{R}^3 is the range, and dim ran A = 3.
- b) We can read the solutions to Ax = 0 off the row-reduced form of A. We must have $x_4 = 0, x_1 = x_2 = -x_3/4$.
- c) Since there is one free variable, the dimension of ker A is I.
- 2. Let $S = \{(x, y) : x = 2, 1 \le y \le 3\} \subset \mathbb{R}^2$.
 - a) Is S an open set in \mathbb{R}^2 ? If not, find a point x so that $B_{\varepsilon}(x) \not\subset S$ for any $\varepsilon > 0$.
 - b) Is S a closed set in \mathbb{R}^2 ? If not, find a sequence in S that converges to point outside S.
 - c) Is S a compact set?

Answer: The set *S* is illusrated in the figure.

- a) No. The point $x = (2, 2) \in S$, but $(2 + \epsilon/2, 2) \in B_{\epsilon}(x)$ for all $\epsilon > 0$ and $(2 + \epsilon/2, 2) \notin S$. Thus S does not contain an open ball around $x \in S$ and so cannot be open.
- b) Yes. If $(x_n, y_n) \in S$ converges, $x_n = 2$ and $1 \le y_n \le 3$. Then $\lim x_n = 2$ and $1 \le \lim y_n \le 3$ by Theorem 12.4, so the limit is in S. Thus S contains all its limit points and so is closed.
- c) Yes. Compact sets in \mathbb{R}^2 are closed and bounded. As seen in part (b), this set is closed. It is also bounded as $||x|| \le \sqrt{2^2 + 3^2} = \sqrt{13}$. Thus it is compact.
- 3. Consider the matrix

$$A = \begin{pmatrix} I & -2 & 3 \\ 0 & I & -3 \\ 0 & I & 5 \end{pmatrix}.$$

- a) Use the determinant to find λ such that $A \lambda I$ is **not** invertible? Denote the set of non-invertible values by Λ .
- b) For each $\lambda \in \Lambda$, find a non-zero vector x such that $(A \lambda I)x = 0$.
- c) Do the three vectors you found in part (b) span \mathbb{R}^3 ? Do they form a basis for \mathbb{R}^3 ?

Answer:

- a) We take the determinant det $(A \lambda I) = (I \lambda)[(I \lambda)(5 \lambda) + 3] = (I \lambda)(\lambda^2 6\lambda + 8) = (I \lambda)(2 \lambda)(4 \lambda)$. The matrix is not invertible if and only if the determinant is zero. This happens only when $\lambda \in \Lambda = \{I, 2, 4\}$.
- b) We find non-zero vectors solving $(A \lambda I)x = 0$. When $\lambda = I$, $x = (I, 0, 0)^T$ is a solution. When $\lambda = 2$, $x = (9, -3, I)^T$ is a solution. When $\lambda = 4$, $x = (5, -3, 3)^T$ is a solution.
- c) The matrix

$$\begin{pmatrix} I & 9 & 5 \\ 0 & -3 & -3 \\ 0 & I & 3 \end{pmatrix}$$

has determinant -6. As this is non-zero, the rank of the matrix of vectors is 3. Since the rank is the number of rows, the vectors span \mathbb{R}^3 and since the rank is also the number of columns, the vector are linearly independent. Thus they form a basis for \mathbb{R}^3 .

In ℝ^N, suppose that x is perpedicular to {w₁, w₂,..., w_n}. Show that x is perpendicular to any linear combination of {w₁, w₂,..., w_n}.

Answer: The vector x is perpedicular to each of the w_i , so $0 = w_1 = \cdots w_n$. Consider a linear combination of $z = \sum_{i=1}^n a_i w_i$. Then $x \cdot z = \sum_{i=1}^n a_i (x \cdot w_i)$. Since each $x \cdot w_i = 0$,

 $x \cdot z = 0$, proving that any linear combination of the w_i is perpedicular to x.