1. Consider the matrix

$$
A = \begin{pmatrix} 1 & 3 & 1 & 2 \\ 2 & 2 & 1 & 1 \\ 3 & 1 & 1 & 2 \end{pmatrix}.
$$

- *a*) What is dimension of the range of A?
- *b*) Find ker $A = \{x : Ax = 0\}$.
- *c*) What is dimension of ker A?

Answer: We first row reduce A before proceeding.

$$
A = \begin{pmatrix} 1 & 3 & 1 & 2 \\ 2 & 2 & 1 & 1 \\ 3 & 1 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 1 & 2 \\ 0 & -4 & -1 & -3 \\ 0 & -8 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 1 & 2 \\ 0 & 4 & 1 & 3 \\ 0 & 0 & 0 & 2 \end{pmatrix}
$$

$$
\rightarrow \begin{pmatrix} 1 & 3 & 1 & 2 \\ 0 & 1 & 1/4 & 3/4 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & 1/4 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1/4 & 0 \\ 0 & 1 & 1/4 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.
$$

- *a*) From the row reduction, we see that the rank of A is three, indicating that $Ax = b$ can always be solved. Thus all of \mathbb{R}^3 is the range, and dim ran $\mathcal{A} = \mathsf{3}.$
- *b*) We can read the solutions to $Ax = 0$ off the row-reduced form of A. We must have $x_4 = 0$, $x_1 = x_2 = -x_3/4$.
- *c*) Since there is one free variable, the dimension of ker A is 1.
- 2. Let $S = \{(x, y) : x = 2, 1 \le y \le 3\} \subset \mathbb{R}^2$.
	- *a*) Is S an open set in \mathbb{R}^2 ? If not, find a point x so that $\mathrm{B}_{\varepsilon}(\mathsf{x})\not\subset\mathrm{S}$ for any $\varepsilon>0.$
	- b) Is S a closed set in \mathbb{R}^2 ? If not, find a sequence in S that converges to point outside S.
	- *c*) Is S a compact set?

Answer: The set S is illusrated in the figure.

- *a*) No. The point $x = (2, 2) \in S$, but $(2 + \varepsilon/2, 2) \in B_{\varepsilon}(x)$ for all $\varepsilon > 0$ and $(2 + \varepsilon/2, 2) \notin S$. Thus S does not contain an open ball around $x \in S$ and so cannot be open.
- *b*) Yes. If $(x_n, y_n) \in S$ converges, $x_n = 2$ and $1 \le y_n \le 3$. Then $\lim x_n = 2$ and $1 \leq \lim y_n \leq 3$ by Theorem 12.4, so the limit is in S. Thus S contains all its limit points and so is closed.
- $\epsilon)$ Yes. Compact sets in \mathbb{R}^2 are closed and bounded. As seen in part (b), this set is closed. It is also bounded as $\|x\| \leq \sqrt{2^2 + 3^2} = \sqrt{13}$. Thus it is compact.
- 3. Consider the matrix

$$
A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & -3 \\ 0 & 1 & 5 \end{pmatrix}.
$$

- *a*) Use the determinant to find λ such that $A \lambda I$ is **not** invertible? Denote the set of non-invertible values by Λ .
- *b*) For each $\lambda \in \Lambda$, find a non-zero vector x such that $(A \lambda I)x = 0$.
- c) Do the three vectors you found in part (b) span \mathbb{R}^3 ? Do they form a basis for \mathbb{R}^3 ?

Answer:

- *a*) We take the determinant det($A \lambda I$) = $(1 \lambda)[(1 \lambda)(5 \lambda) + 3] = (1 \lambda)(\lambda^2 6\lambda + 8)$ = $(1 - \lambda)(2 - \lambda)(4 - \lambda)$. The matrix is not invertible if and only if the determinant is zero. This happens only when $\lambda \in \Lambda = \{1, 2, 4\}.$
- *b*) We find non-zero vectors solving $(A \lambda I)x = 0$. When $\lambda = I$, $x = (I, 0, 0)^T$ is a solution. When $\lambda = 2$, $x = (9, -3, 1)^T$ is a solution. When $\lambda = 4$, $x = (5, -3, 3)^T$ is a solution.
- *c*) The matrix

$$
\begin{pmatrix} 1 & 9 & 5 \ 0 & -3 & -3 \ 0 & 1 & 3 \end{pmatrix}
$$

has determinant -6. As this is non-zero, the rank of the matrix of vectors is 3. Since the rank is the number of rows, the vectors span \mathbb{R}^3 and since the rank is also the number of columns, the vector are linearly independent. Thus they form a basis for \mathbb{R}^3 .

4. In \mathbb{R}^N , suppose that x is perpedicular to $\{w_1, w_2, \ldots, w_n\}$. Show that x is perpendicular to any linear combination of $\{w_1, w_2, \ldots, w_n\}$.

Answer: The vector x is perpedicular to each of the w_i , so $0 = w_1 = \cdots w_n$. Consider a linear combination of $z = \sum_{i=1}^n a_i w_i$. Then $x \cdot z = \sum_{i=1}^n a_i (x \cdot w_i)$. Since each $x \cdot w_i = 0$,

 $x \cdot z = 0$, proving that any linear combination of the w_i is perpedicular to x.