Mathematical Economics Exam #2, Nov. 9, 2017

1. Consider the problem of maximizing $p_1 x_1 + p_2 x_2$ under the constraint $x_1^4 + x_2^4 \leq 1$. The parameters obey $p_1 p_2 \neq 0$.

 a) Is constraint qualification satisfied?

 Answer: There is only one constraint, with derivative $dg = (4x_1^3, 4x_2^3)$. This is non-zero unless $x = 0$. As there is is one constraint, the non-degenerate constraint qualification condition (NDCQ) is satisfied for $x \neq 0$. When the constraint binds, $x \neq 0$, so NDCQ is satisfied.

 b) Find all solutions to the maximization problem.

 Answer: Form the Lagrangian $L = p_1 x_1 + p_2 x_2 + \lambda(1 - x_1^4 - x_2^4)$. The first order conditions are

 \[
 0 = p_1 - 4\lambda x_1^3 \\
 0 = p_2 - 4\lambda x_2^3
 \]

 It follows that $\lambda > 0$, so $x_1^4 + x_2^4 = 1$ (the constraint binds by complementary slackness). Then $p_1/p_2 = x_1^3/x_2^3$, so $x_1^4 = (p_2/p_1)^{4/3} x_1^4$. Substituting into the constraint, we find $[1 + (p_2/p_1)^{4/3}] x_1^4 = 1$. Since $\lambda > 0$, x_i must have the same sign as p_i.

 \[
 \begin{pmatrix}
 x_1 \\
 x_2
 \end{pmatrix} = \frac{1}{(p_1^{4/3} + p_2^{4/3})^{1/4}} \begin{pmatrix}
 (\text{sgn } p_1) p_1^{1/3} \\
 (\text{sgn } p_2) p_2^{1/3}
 \end{pmatrix}.
 \]

 It follows that the maximum value of $p_1 x_1 + p_2 x_2$ is

 \[
 \left(p_1^{4/3} + p_2^{4/3} \right)^{3/4}.
 \]

 Although it is beyond the scope of this problem, we can now obtain a more general result. For $1 \leq p < \infty$, define $\|x\|_p$ by

 \[
 \|x\|_p = \left(\sum_{i=1}^{L} |x_i|^p \right)^{1/p}.
 \]

 The same technique shows that in \mathbb{R}^L, maximizing $p \cdot x$ subject to the constraint $\|x\|_p \leq 1$ for $1 < p < \infty$, yields maximum value $\|p\|_q$ with $1/p + 1/q = 1$. Thus
for any $x \neq 0$ $p \cdot (x/\|x\|_p) \leq \|p\|_q$, implying that $p \cdot x \leq \|p\|_q \|x\|_p$. Consideration of $-x$ allows us to write this as $|p \cdot x| \leq \|p\|_q \|x\|_p$, which is a special case of Hölder’s Inequality.

2. Consider the problem of maximizing $\sqrt{c\ell}$ under the constraints $c + \ell \leq 24$, $c + 3\ell/4 \leq 20$, $c \geq 0$, and $\ell \geq 0$.

 a) Sketch the feasible set.

 Answer:

 \[\begin{array}{c}
 c + \ell = 24 \\
 c + 3\ell/4 = 20 \\
 24 \quad 26\frac{2}{3} \\
 \ell
 \end{array} \]

 b) Is constraint qualification satisfied?

 Answer: Two of the constraints must be rewritten as $-c \leq 0$ and $-\ell \leq 0$. Then

 \[dg = \begin{pmatrix} 1 & 1 \\ 1 & 3/4 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} \]

 Each line is non-zero, so if only one constraint binds, constraint qualification is satisfied. Part (a) makes it clear that at most two constraints can bind. Any pair of rows of dg are linearly independent, so the rank is two in any of these cases. This means that the non-degenerate constraint qualification condition (NDCQ) is satisfied.

 c) Find all solutions to the maximization problem.
Answer: The Lagrangian is $L = \sqrt{c\ell} + \lambda_1 c + \lambda_2 \ell + \lambda_3 (24 - c - \ell) + \lambda_4 (20 - c - 3\ell/4)$. The first order conditions are

$$
0 = \sqrt{\ell/c} + \lambda_1 - \lambda_3 - \lambda_4 \\
0 = \sqrt{c/\ell} + \lambda_2 - \lambda_3 - 3\lambda_4/4.
$$

These conditions cannot be satisfied if either $c = 0$ or $\ell = 0$. By complementary slackness, $\lambda_1 = \lambda_2 = 0$. Complementary slackness also shows that at least one of constraints 3 and 4 must bind. We now rewrite the first order conditions

$$
\sqrt{\ell/c} = \lambda_3 + \lambda_4 \\
\sqrt{c/\ell} = \lambda_3 + 3\lambda_4/4.
$$

First, consider the case $c + \ell < 24$. Then $\lambda_3 = 0$. The first order conditions can be reduced to $\ell/c = 4/3$. Further, since $\lambda_4 > 0$, $c + 3\ell/4 = 20$, so $c = 10$ and $\ell = 40/3$. Then $c + \ell = 232/3 < 24$, so all the constraints are satisfied.

Next, suppose $c + 3\ell/4 < 20$. Then $\lambda_4 = 0$, and we have $\ell/c = 1$. Since $\lambda_3 > 0$, $c + \ell = 24$, implying $c = \ell = 12$. But then $c + 3\ell/4 = 21 > 21$, contradicting our assumption that $c + 3\ell/4 < 20$. There is no solution here.

The only solution is $(c, \ell) = (10, 40/3)$.

3. Consider the set $A = \{(x, y, z) : x + 2y + 3z = 6\}$.

 a) Is A a vector subspace? Explain.
 b) Is A open? Explain.
 c) Is A connected? Explain.
 d) Is A closed? Explain.
 e) Is A compact? Explain.

Answer: The set A is a plane that does not go through the origin.

 a) **No.** The point $(1, 1, 1) \in A$, but $2(1, 1, 1) \not\in A$, so it is not a vector subspace.

 b) **No.** The point $(1, 1, 1) \in A$, but $(1 + \varepsilon, 1, 1) \not\in A$ for $\varepsilon > 0$. This means any $B_\varepsilon(1, 1, 1)$ is not contained in A.

 c) **Yes.** Suppose $(x, y, z), (x', y', z') \in A$. Consider the path defined by $f(t) = t(x', y', z') + (1 - t)(x, y, z)$. Then $f(0) = (x, y, z), f(1) = (x', y', z')$ and $f(t) \in A$ for all $t \in [0, 1]$. This means that A is path-connected, hence connected.
d) **Yes.** The set is closed because \(f(x, y, z) = x + 2y + 3z \) is continuous and \(A \) is the inverse image of a closed set, \(A = f^{-1}\{6\} \).

c) **No.** The set is not bounded because \((6, n, -n) \in A\) for all \(n\).

4. Let \(f(x, y, z) = x^2 + y^2 + 3z \).

 a) Does this function map \(\mathbb{R}^3 \) onto \(\mathbb{R} \)?

 Answer: Yes, it is onto. In fact, we can even set two of the variables to zero. Here \(f(0, 0, a/3) = a \), showing that the function takes all real values.

 b) Find all points \((x_0, y_0, z_0)\) satisfying \(f(x_0, y_0, z_0) = 12 \).

 Answer: Such points obey \(x_0^2 + y_0^2 = 12 - 3z_0 \). This only has a solution when \(12 - 3z_0 \geq 0 \). Thus the solutions are all \((x_0, y_0, z_0)\) obeying \(x_0^2 + y_0^2 = 12 - 3z_0 \) with \(z_0 \leq 4 \).

 c) For what \((x_0, y_0, z_0)\) obeying \(f(x_0, y_0, z_0) = 12 \) is there a differentiable function \(g(y, z) \) defined on some neighborhood of \((y_0, z_0)\) that obeys \(x_0 = g(y_0, z_0) \) and \(f(g(y, z), y, z) = 12 \)?

 Answer: Since \(\frac{\partial f}{\partial x} = 2x \), \(\frac{\partial f}{\partial x}(x_0, y_0, z_0) = 2x_0 \). The Implicit Function Theorem yields such a function \(g \) whenever \(x_0 \neq 0 \), which requires \(z_0 < 4 \). Alternatively, note that \(g(y, z) = (\text{sgn} x_0)(12 - 3z_0 - z^2)^{1/2} \) works.

 d) Compute \(dg \) at \((x_0, y_0, z_0)\) obeying \(f(x_0, y_0, z_0) = 12 \).

 Answer: By the Implicit Function Theorem,

 \[
 dg = -\frac{1}{2x} \left(\frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = -\left(\frac{y_0}{x_0}, \frac{3}{2x_0} \right).
 \]