Mathematical Economics Exam \# I, September 23, 202 I

Answer all four questions. You may use any reasonable shortcuts. To insure maximum credit, be sure to explain your answers. Each question is worth 25 points, for a total of 100 points. The questions are not equally hard. Good luck!

1. Consider the linear system

$$
\begin{array}{r}
x+2 y+3 z=a \\
2 x+2 y+3 z=b \\
3 x+4 y+6 z=c
\end{array}
$$

a) For what values of a, b, c does this system have a solution?
b) When the system has a solution, when is that solution unique?
2. Consider the matrix

$$
A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 8 & 27 & 4 \\
2 & 4 & 9 & 16
\end{array}\right)
$$

a) What is the rank of \boldsymbol{A} ?
b) Recall $\operatorname{ker} \boldsymbol{A}=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\}$. What is $\operatorname{dim} \operatorname{ker} \boldsymbol{A}$?
c) Find a basis for $\operatorname{ker} \boldsymbol{A}$.
3. Let V be an inner product space and $\boldsymbol{x}, \mathbf{y} \in V$ with $\boldsymbol{x} \neq \mathbf{y}$. Show that

$$
z=y-\frac{x \cdot y}{\|x\|^{2}} x
$$

is perpendicular to \boldsymbol{x}.
4. Consider the following norms on \mathbb{R}^{3}. The Euclidean norm $\|\boldsymbol{x}\|_{2}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{1 / 2}$, and the sup-norm $\|\boldsymbol{x}\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right\}$.
a) Find a number A so that $\|\boldsymbol{x}\|_{2} \leq A\|\boldsymbol{x}\|_{\infty}$.
b) What do you expect A to be in \mathbb{R}^{n} ?

