Mathematical Economics Exam \# I, September 23, 202 I

1. Consider the linear system

$$
\begin{array}{r}
x+2 y+3 z=a \\
2 x+2 y+3 z=b \\
3 x+4 y+6 z=c
\end{array}
$$

a) For what values of a, b, c does this system have a solution?
b) When the system has a solution, when is that solution unique?

Answer:

a) We start by forming the augmented matrix and row-reducing.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 2 & 3 & a \\
2 & 2 & 3 & b \\
3 & 4 & 6 & c
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 3 & a \\
2 & 2 & 3 & b \\
0 & 0 & 0 & c-a-b
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 3 & a \\
1 & 0 & 0 & b-a \\
0 & 0 & 0 & c-a-b
\end{array}\right) \rightarrow \\
& \left(\begin{array}{cccc}
1 & 0 & 0 & b-a \\
1 & 2 & 3 & a \\
0 & 0 & 0 & c-a-b
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & b-a \\
0 & 2 & 3 & 2 a-b \\
0 & 0 & 0 & c-a-b
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & b-a \\
0 & 1 & 3 / 2 & a-b / 2 \\
0 & 0 & 0 & c-a-b
\end{array}\right)
\end{aligned}
$$

This will have a solution if and only if $c=a+b$.
b) When $c=a+b$, the system has solutions. They can be written

$$
\begin{aligned}
& x=b-a \\
& y=a-\frac{b}{2}-\frac{3}{2} z
\end{aligned}
$$

Here z is a free variable, so there are infinitely many solutions. Another way to see this is that $\operatorname{rank} \boldsymbol{A}=2$ which is less than the number of variables $(n=3)$.
2. Consider the matrix

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 8 & 27 & 4 \\
2 & 4 & 9 & 16
\end{array}\right)
$$

a) What is the rank of \boldsymbol{A} ?
b) Recall $\operatorname{ker} \boldsymbol{A}=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\}$. What is dim $\operatorname{ker} \boldsymbol{A}$?
c) Find a basis for $\operatorname{ker} \boldsymbol{A}$.

Answer:

a) We start by row-reducing \boldsymbol{A}.

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 8 & 27 & 4 \\
2 & 4 & 9 & 16
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 6 & 24 & 0 \\
0 & 0 & 3 & 8
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 4 & 0 \\
0 & 0 & 1 & 8 / 3
\end{array}\right) \rightarrow \\
& \left(\begin{array}{cccc}
1 & 0 & -5 & 4 \\
0 & 1 & 4 & 0 \\
0 & 0 & 1 & 8 / 3
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 52 / 3 \\
0 & 1 & 0 & -32 / 3 \\
0 & 0 & 1 & 8 / 3
\end{array}\right)
\end{aligned}
$$

which has rank 3.
b) By the Fundamental Theorem of Linear Algebra, the $\operatorname{rank} \boldsymbol{\mathcal { A }}+\operatorname{dim} \operatorname{ker} \boldsymbol{A}=4$, so $\operatorname{dim} \operatorname{ker} \boldsymbol{A}=1$.

Alternatively, there is one free variable, so $\operatorname{dim} \operatorname{ker} \boldsymbol{A}=1$.
c) The kernel solves $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$, or

$$
\begin{aligned}
& x_{1}=-(52 / 3) x_{4} \\
& x_{2}=(32 / 3) x_{4} \\
& x_{3}=-(8 / 3) x_{4}
\end{aligned}
$$

Any vector in $\operatorname{ker} \boldsymbol{A}$ will be a non-zero multiple of

$$
\mathbf{b}=\left(\begin{array}{c}
-52 / 3 \\
32 / 3 \\
-8 / 3 \\
1
\end{array}\right)
$$

which we obtained by setting $z_{4}=1$. Then $\{\mathbf{b}\}$ is a basis for $\operatorname{ker} \boldsymbol{A}$.
3. Let V be an inner product space and $\boldsymbol{x}, \boldsymbol{y} \in V$ with $\boldsymbol{x} \neq \mathbf{y}$. Show that

$$
z=y-\frac{x \cdot y}{\|x\|^{2}} x
$$

is perpendicular to \boldsymbol{x}.
Answer: I will assume we are dealing with a real vector space (as you did), so that $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \boldsymbol{x}$. It works for complex spaces too. We compute

$$
\begin{aligned}
z \cdot x & =y \cdot x-\frac{x \cdot y}{\|x\|^{2}} x \cdot x \\
& =\mathbf{y} \cdot \mathbf{x}-\mathbf{x} \cdot \mathbf{y} \\
& =0
\end{aligned}
$$

Then z and x are perpendicular since their inner product is zero.
In the complex case the calculation is slightly different because $\mathbf{x} \cdot \mathbf{y}=\overline{\mathbf{y} \cdot \boldsymbol{x}}$ and the linear product is sesqui-linear. Here we would write

$$
\begin{aligned}
z \cdot \boldsymbol{x} & =\mathbf{y} \cdot \mathbf{x}-\frac{\overline{\mathbf{x} \cdot \mathbf{y}}}{\|\boldsymbol{x}\|^{2}} \mathbf{x} \cdot \mathbf{x} \\
& =\mathbf{y} \cdot \mathbf{x}-\overline{\mathbf{x} \cdot \boldsymbol{x}} \\
& =\mathbf{y} \cdot \mathbf{x}-\mathbf{y} \cdot \mathbf{x} \\
& =0
\end{aligned}
$$

4. Consider the following norms on \mathbb{R}^{3}. The Euclidean norm $\|\boldsymbol{x}\|_{2}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{1 / 2}$, and the sup-norm $\|\boldsymbol{x}\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right\}$.
a) Find a number A so that $\|\boldsymbol{x}\|_{2} \leq A\|\boldsymbol{x}\|_{\infty}$.
b) What do you expect A to be in \mathbb{R}^{n} ?

Answer:
a) For each $i,\left|x_{i}\right| \leq\|\boldsymbol{x}\|_{\infty}$, so $x_{i}^{2} \leq\|\boldsymbol{x}\|_{\infty}^{2}$. Then

$$
\begin{aligned}
\|\boldsymbol{x}\|_{2} & =\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{1 / 2} \\
& \leq\left(\|\mathbf{x}\|_{\infty}^{2}+\|\mathbf{x}\|_{\infty}^{2}+\|\boldsymbol{x}\|_{\infty}^{2}\right)^{1 / 2} \\
& =3^{1 / 2}\|\mathbf{x}\|_{\infty} .
\end{aligned}
$$

We may take $A=\sqrt{3}$.
b) In $\mathbb{R}^{n}, A=\sqrt{n}$.

