Mathematical Economics Exam \#2, October 28, 2021

I. Consider the equation $x^{4}-x^{2}+y^{2}=0$.
a) For what values of (x, y) with $-\mathrm{I} \leq x \leq \mathrm{I}$ does this not define a regular curve?
b) If the curve is regular, for which (x, y) with $x \in[-I,+I]$ can we write y as a function of x ?
c) Is $\left\{(x, y): x^{4}-x^{2}+y^{2}=0\right\}$ a manifold?

Answer: The curve looks rather like an infinity symbol and is called the lemniscate of Gerono (or of Huygens).
a) We compute the derivative of $F(x, y)=x^{4}-x^{2}+y^{2}$. It is $D F=\left(4 x^{3}-2 x, 2 y\right)$. If the derivative is zero, then $y=0$ and $4 x^{3}-2 x=0$. One solution is $(x, y)=(0,0)$. If $x \neq 0$, we obtain $4 x^{2}-1=0$. But this contradicts $y=0$, which requires $x^{4}-x^{2}=0$, and since $x \neq 0$, it requires $x^{2}=1$, contradicting $4 x^{2}=1$. So the only non-regular point on the curve is $(0,0)$.
b) The Implicit Function Theorem allows us to write y as a function of x whenever $\partial F / \partial y=2 y \neq 0$. That is, when $y \neq 0$. Since $x^{4}-x^{2}+Y^{2}=0$, this happens only when $x=0, \pm I$.

We can write x as a function of y whenever $\partial F / \partial x=4 x^{3}-2 x \neq 0$. We cannot write x as a function of y at $(x, y)=(0,0)$, nor at $x= \pm I / \sqrt{2}$, which corresponds to $y= \pm I / 2$. This gives us four points: $(\pm I / \sqrt{2}, I / 2)$ and $(\pm I / \sqrt{2},-I / 2)$.
c) Short answer: NO.

Long answer. Any neighborhood U of $(0,0)$ has four arms. Suppose such a U is homeomorphic to an interval (a, b) via φ. Let $c=\varphi(0,0)$. If we remove $(0,0), \varphi$ is a homeomorphism between $\mathrm{U} \backslash\{(0,0)\}$ and $(\mathrm{a}, \mathrm{c}) \cup(\mathrm{c}, \mathrm{b})$. Now $\mathrm{U} \backslash\{(0,0)\}$ consists of 4 components. But $\varphi^{-1}(a, c)$ and $\varphi^{-1}(c, b)$ are both connected and can only cover two components. As $\varphi^{-1}((a, c) \cup(c, b))=\mathrm{U} \backslash\{(0,0)\}$, this is impossible. It follows that the sets are not homeomorphic, and the curve is not a manifold at $(0,0)$.
2. For each of the following spaces X and sets $S \subset X$, determine whether each subset S is an open, closed, connected, and/or compact subset of X.
a) $X=\mathbb{R}^{2}$ with the usual topology. $S=\{(n, m)$: both n and m are integers $\}$.
b) $X=\mathbb{R}^{2}$ with the usual topology. $S=\left\{(x, y): x^{2}+y^{2} \geq 1, x^{2}+y^{2}<10\right\}$.
c) $X=(0, I) \cup(2,3)$ with the usual topology. The set S is the interval $(0, I)$

Answer:

a) The set of lattice points S is not open because $B_{1 / 2}(0,0)$ contains points that are not lattice points. The set S is closed, because if $x_{n} \in S$ and $x_{n} \rightarrow x$, then there is an N with $\left\|x_{n}-x\right\|<I / 2$ for $n>N$. Since any two lattice points are separated by at least distance I, there can be only one such lattice point. This shows $x_{n}=x_{N}$ for $n>N$. It follows that the limit $x=x_{N}$ is also a lattice point, and thus in S. THe set S is not connected since the open sets $U=\left\{x \in S: x_{1}<I\right\}$ and $V=\left\{x \in S: x_{1}>0\right\}$ disconnect S. Finally, S is not compact because it isn't bounded.
b) The annulus S is neither closed nor open because in includes the inner boundary (not open) but not the outer boundary (not closed). Since it is not closed, it is not compact. The set S is connected because there's a path in S between any two points. If we use polar coordinates, writing the points as $\left(x_{i}, y_{i}\right)=\left(r_{i} \sin \theta_{i}, r_{i} \cos \theta_{i}\right)$, we have $\mathrm{I} \leq \mathrm{r}_{1}, \mathrm{r}_{2}<\mathrm{I} 0$, and the path between them can be written

$$
f(t)=\left((I-t) r_{1}+t r_{2},(I-t) \theta_{1}+t \theta_{2}\right)
$$

for $t \in[0, I]$. Note that $I \leq(I-t) r_{1}+\operatorname{tr}_{2}<I 0$, so $f(t) \in S$ for all $t \in[0, I]$.
c) Interestingly, the set $(0, I)$ is both open and closed in X. If $x_{n} \in S$ and $x_{n} \rightarrow x$ with $x \in X$, it can't be that $x \in(2,3)$, so $x \in(0, I)$, showing $(0, I)$ is closed. As an interval, X is connected. As for compactness, the sequence $x_{n}=1 / \mathrm{ninS}$ has no convergent subsequence since $0 \notin X$. Thus S is not compact.
3. Consider the quadratic form on \mathbb{R}^{3} defined by

$$
Q(x)=y^{2}-2 z^{2}+2 x y-2 x z+2 y z .
$$

a) Is Q positive definite, negative definite, or indefinite?
b) Suppose we impose add the constraint $x+2 z=0$. Is there a constrained maximum or minimum at the origin?

Answer:

a) It is indefinite. We compute $Q(0, I, 0)=I$ and $Q(0,0, I)=-I$, showing that the quadratic form is indefinite.
b) The easy way to solve this is to substitute $x=-2 z$ in Q , obtaining $y^{2}+2 z^{2}-2 x y=$ $(y-z)^{2}+z^{2}$. This is non-negative, and is only zero at $(y, z)=(0,0)$, implying $x=0$.

Thus it is positive definite under the constraint and has a unique constrained minimum at $(0,0,0)$.

Alternatively, the form has the associated matrix

$$
A=\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 1 & 1 \\
-1 & 1 & -2
\end{array}\right)
$$

The bordered Hessian is

$$
H=\left(\begin{array}{cccc}
0 & 1 & 0 & 2 \\
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1 \\
2 & -1 & 1 & -2
\end{array}\right)
$$

There are $m=3$ variables and $k=1$ constraints, so we must check the last $m-k=2$ leading principal minors. Now $\operatorname{det} \mathrm{H}_{3}=-I$ and $\operatorname{det} \mathrm{H}_{4}=-I$. The minors have the same sign, so we do not have a maximum at zero. To be a minimum at zero, the signs must be the same, and the common sign must be the same as $(-I)^{m}=-I$. It is, so we have a constrained minimum at $(0,0,0)$.
4. Find the first 4 terms of the Taylor expansion of $\sin x$ about $x=0$.

Answer: We first compute $\sin x$ and its first three derivatives at $x=0 . \sin 0=0, \cos 0=1$, $-\sin 0=0$, and $-\cos 0=-I$. Two of the terms are zero, leaving us with

$$
x-\frac{x^{3}}{3}
$$

as the first four terms.
FYI. The first four non-zero terms are

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} .
$$

and the power series, which converges for all x, is

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} .
$$

