Mathematical Economics Final, December 6, 2022

I. Let $f(x, y)=\left(x^{2}-y^{2}\right)^{2}$.
a) Find all critical points on \mathbb{R}^{2}.

Answer: The derivative is

$$
D f=2\left(x^{2}-y^{2}\right)(2 x,-2 y)
$$

The covector $(2 x,-2 y)$ is zero only at $(x, y)=(0,0)$. The derivative is also zero when $x^{2}-y^{2}=0$. That is, if $x= \pm y$.
b) Which critical points are maxima? Minima?

Answer: The function $f(x, y)=\left(x^{2}-y^{2}\right)^{2}$ is always non-negative. It takes the minimum value zero whenever $x= \pm y$, so every critical point is a minimum. There are no maxima. In fact, if $y=\alpha x$ for $\alpha \neq \pm I, f(x, \alpha x)=\left(I-\alpha^{2}\right)^{2} x^{4}$, which increases monotonically toward $+\infty$ as $x \rightarrow+\infty$ (or as $x \rightarrow-\infty$).
FYI: The Hessian is

$$
H=\left(\begin{array}{cc}
12 x^{2}-4 y^{2} & -8 x y \\
-8 x y & 12 y^{2}-4 x^{2}
\end{array}\right)
$$

At the critical points, $x^{2}=y^{2}$, so we can write the Hessian there as

$$
\mathrm{H}(x, \pm \mathrm{y})=\left(\begin{array}{cc}
8 x^{2} & \mp 8 x^{2} \\
\mp 8 x^{2} & 8 x^{2}
\end{array}\right)
$$

which is positive semidefinite for $x \neq 0$.
The situation around $(0,0)$ is a bit complex with minima on the x-shaped set where $x^{2}=y^{2}$ and indefinite Hessians everywhere else, as befits a function with no maximum and minima on the X.
2. Maximize $f(x, y, z)=x+y+\sqrt{z}$ subject to the constraints $x \geq 0, y \geq 0, z \geq 0$, and $x+2 y+z \leq 5$.
Answer: This is a consumer's problem with $\mathrm{Df}=\left(1,2, \frac{1}{2} z^{-1 / 2}\right)>(0,0,0)$. We know from the homework that the budget constraint binds. As a result, at most 3 constraints can bind.

The derivative of the constraints is

$$
D g=\left(\begin{array}{ccc}
1 & 2 & 1 \\
-I & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Whether one, two, or three constraints bind, the matrix formed by the binding constraints has full rank, so NDCQ is satisfied.

The Lagrangian is

$$
\mathcal{L}=x+y+\sqrt{z}-\lambda(x+2 y+z-5)+\mu_{x} x+\mu_{y} y+\mu_{z} z .
$$

The first order conditions are

$$
\begin{aligned}
& 0=I-\lambda+\mu_{x} \\
& 0=I-2 \lambda+\mu_{y} \\
& 0=\frac{1}{2 \sqrt{z}}-\lambda+\mu_{z}
\end{aligned}
$$

We rewrite these as

$$
\begin{aligned}
\lambda & =1+\mu_{x} \\
2 \lambda & =1+\mu_{y} \\
\lambda & =\frac{1}{2 \sqrt{z}}+\mu_{z}
\end{aligned}
$$

The first line tells us that $\lambda \geq I$. Then by the second line, $\mu_{y} \geq I$, implying $y=0$ by complementary slackness.

The remaining first order conditions are

$$
\begin{aligned}
& \lambda=1+\mu_{x} \\
& \lambda=\frac{1}{2 \sqrt{z}}+\mu_{z}
\end{aligned}
$$

These can't be satisfied with $z=0$, so $z>0$ and $\mu_{z}=0$. Then $z=1 / 4 \lambda^{2}$. If $\lambda=1, z=1 / 4$ and $x=19 / 4$ by the "budget constraint". Then $f(x, y, z)=19 / 4+1 / \sqrt{4}=21 / 4$.

If $\lambda>\mathrm{I}, \mu_{\mathrm{x}}=\lambda-\mathrm{I}>0$, so $x=0$ by complementary slackness. It follows that $z=5$ and $f(x, y, z)=1 / \sqrt{5} \approx 0.45$, which is not the maximum.

The maximum is $2 I / 4=5 \frac{1}{4}$ at $(x, y, z)=(19 / 4,0,1 / 4)$.
3. Consider the function $f(x, y, z)=e^{x^{2}}+\sin x y z-z^{3}$ on the closed ball $B=\{(x, y, z)$: $\left.x^{2}+y^{2}+z^{2} \leq 1\right\}$. Without doing any computations, explain why f has both a maximum and minimum on the ball B

Answer: The ball B is both closed and bounded, hence compact. The function is the sum of three continuous functions, and so is continuous. By the Weierstrass Theorem, f must have both a maximum and minimum on B.
4. Consider the quadratic form $\mathrm{Q}(x, y, z)=x^{2}+2 x y+y^{2}+2 x z+z^{2}$.
a) Find a matrix A that defines the quadratic form Q.

Answer: The matrix

$$
A=\left(\begin{array}{lll}
l & I & l \\
I & I & 0 \\
1 & 0 & 1
\end{array}\right)
$$

defines Q .
b) Does the quadratic form Q have a maximum, minimum, or is it indefinite at $(0,0,0)$ under the constraint $x+2 y+z=0$?
Answer: We form the bordered matrix

$$
B=\left(\begin{array}{llll}
0 & 1 & 2 & 1 \\
1 & 1 & 1 & 1 \\
2 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

There are $m=3$ variables and $k=I$ constraints, as $m-k=2$ we must check the signs of the last two (third and fourth) leading principal minors. As both $(-I)^{m}=-I$ and $(-I)^{k}=-I$, the last principal minor must be negative for the form to be constrained definite.

We row reduce to obtain the minors.

$$
\begin{aligned}
\left|\begin{array}{cccc}
0 & 1 & 2 & 1 \\
1 & 1 & 1 & 1 \\
2 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right| & \longrightarrow-\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 \\
2 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right|
\end{aligned} \longrightarrow-\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 2 \\
1 \\
0 & -1 & -1 \\
0 & 0 & -1 \\
0
\end{array}\right| \longrightarrow\left(\begin{array} { c c c c }
{ 1 } & { 1 } & { 1 } & { 1 } \\
{ 0 } & { 1 } & { 2 } & { 1 } \\
{ 0 } & { 0 } & { 1 } & { - 1 } \\
{ 0 } & { 0 } & { - 1 } & { 0 }
\end{array} \left|\longrightarrow-\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1
\end{array}\right| l\right.\right.
$$

Since we did not use the last row to operate on the other rows, we can now read off the last two leading principal minors: $\operatorname{det} B_{3}=-I$ and $\operatorname{det} B_{4}=+I$. As the last
leading principal minor is positive, the quadratic form is constrained indefinite. The point $(0,0,0)$ is a saddlepoint.
5. Maximize $f(x, y, z)=x+y z$ under the constraints $x^{2}+y^{2}+z^{2} \leq 25, x, y, z \geq 0$.

Answer: Here

$$
D g=\left(\begin{array}{ccc}
2 x & 2 y & 2 z \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

It's impossible for all four constraints to bind at once, and the various submatrices have full rank unless $x y z=0$. As $(0,0,0),(0, y, 0)$ and $(0,0, z)$ minimize the function f and it is possible to do better, we don't have to worry about them. The point ($x, 0,0$) with $x>0$ yields rank 3 , so it is not a problem either. That takes care of the potential problem cases.

The Lagrangian is

$$
\mathcal{L}=x+y z-\lambda\left(x^{2}+y^{2}+z^{2}-25\right)+\mu_{x} x+\mu_{y} y+\mu_{z} z .
$$

so the first order conditions are

$$
\begin{aligned}
& 0=1-2 \lambda x+\mu_{x} \\
& 0=z-2 \lambda y+\mu_{y} \\
& 0=y-2 \lambda z+\mu_{z}
\end{aligned}
$$

or

$$
\begin{aligned}
2 \lambda x & =1+\mu_{x} \\
2 \lambda y & =z+\mu_{y} \\
2 \lambda z & =y+\mu_{z}
\end{aligned}
$$

By the first line, $2 \lambda x \geq I$, so both $\lambda>0$ and $x>0$. By complementary slackness, $\mu_{x}=0$ and so $\lambda x=1$. Also, the constraint $x^{2}+y^{2}+z^{2}=25$ must bind.

Multiply the second equation by y and the third by z. Then

$$
\begin{aligned}
& 2 \lambda y^{2}=y z+\mu_{y} y=y z \\
& 2 \lambda z^{2}=y z+\mu_{z} z=y z
\end{aligned}
$$

by complementary slackness. It follows that $y^{2}=z^{2}$. As both y and z are non-negative, $y=z$, implying $2 \lambda y^{2}=y z=y^{2}$. If $y>0$, we find $\lambda=1 / 2$. Then $x=I$ and $y=z=\sqrt{12}$. In that case $f(1, \sqrt{12}, \sqrt{12})=13$. This is the maximum.

If $y=z=0, x=5$ by complementary slackness and $f(5,0,0)=5$. This is neither a maximum nor minimum because within any neighborhood of $(5,0,0)$ there are points obeying the constraints where f is larger, and others where f is smaller. Decreasing x to increase both y and z increases f, while decreasing x while leaving y and z at zero, decreases f.

