
Homework Assignment #3

12.15 Show that open balls on the real line are exactly the open intervals: sets of the form (a, b) =

{x : a < x < b}, defined for two given numbers a and b.

Answer: We want to write (a, b) = Bε(x) = (x − ε, x + ε). That requires a = x − ε and

b = x + ε. We solve for x and ε, obtaining

x =
a + b

2
and ε =

b− a

2
> 0.

12.16 Show that any open set is the union of open balls. Conclude that any open set is its own

interior.

Answer: Let U be an open set in a metric space (X, d). Since U is open, for each x ∈ U, we

can find an εx > 0 with Bεx
(x) ⊂ U. Then U = ∪x∈UBεx

(x) since every Bεx
(x) ⊂ U and

every point x ∈ U is included in the union.

The interior is the union of all open sets contained in U. We’ve shown that U is the union

of open balls contained in U, so the interior must at least contain U itself. Since intU ⊂ U, it

must be that U = intU.

12.20 Prove that any finite set is a closed set. Prove that the set of integers is a closed set.

Answer: (1) Suppose A is a finite set.

(1a) The easy proof that A is closed applies in any metric space. In a metric space, any

singleton is a closed set. Since any finite union of closed sets is closed, A is closed as the finite

union of singletons.

(1b) For another proof that A is closed, let {xn} be a sequence in A with limit x. We must

show that x ∈ A. We continue by contradiction. Suppose x /∈ A and let ε = min{d(x, a) :

a ∈ A} > 0. This minimum exists and is positive because A is finite and no point in A is x.

Then d(x, a) ≥ ε for all a ∈ A. But because xn → x, we can find and N with d(xn, x) < ε

for n > N. This contradiction shows that x ∈ A. Since A contains all of its limit points, it is a

closed set.

(2) Next we consider the status of the set of integers Z. Let {xn} be a sequence in Z with

limit x. We must show that x ∈ Z. Since xn → x, there must be an N with |xn − x| < 1/2

whenever n ≥ N. Now take k ≥ N. Then

|xN − xk| ≤ |xN − x| + |x− xk| < 1/2 + 1/2 = 1.

Since xk and xN are both integers, it must be that xk = xN for all k > N. It follows that

lim xn = xN ∈ Z. Since Z contains all of its limit points, it is a closed set.
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12.21 For each of the following subsets of the plane, draw the set, state whether it is open, closed,

or neither, and justify your answer in a word or two:

a) {(x, y) : −1 < x < +1, y = 0}, b) {(x, y) : x and y are integers},

c) {(x, y) : x + y = 1}, d) {(x, y) : x + y < 1}, e) {(x, y) : x = 0 or y = 0}.

Answer: First, we draw the sets.

(a)

1−1

bc bc

(b)
b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

(c) (d) (e)

a) This set, which I’ll call A, is not open because Bε(0, 0) pokes out of A as illustrated, nor is

A closed as the limit points (±1, 0) are not in A.

b) This set, which I’ll call B, is not open. For ε > 0, any ε-ball about any point in the set

contains points not in the set (illustrated). This set is closed. As in problem 12.20, any

convergent sequence with integral coordinates must eventually be constant since there is

only one integer point within any distance ε < 1/2 of its limit.

c) This set is not open (Bε(1, 0) pokes out as illustrated). It is closed. To see this, define

f(x, y) = x + y, then f is continuous and the set is f−1({1}), which is closed as the inverse

image of a closed set.

d) This set, which I’ll call D, is open. Use the function f from (c), so that D = f−1(−∞, 0)).

It is not closed since xn = (1,−1/n) ∈ D and xn → (1, 0) /∈ D.
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e) This set, which I will call E, is not open as Bε(0, 0) 6⊂ E as illustrated. To see that E is

closed, consider the function f(x, y) = xy. As a polynomial, this is a continuous function.

The set is the inverse image of the singleton {0}, E = f−1({0}). Since singletons are closed,

and f is continuous, E is also closed.

13.17 Suppose that f : Rk
→ R

1 is a continuous function and that f(x∗) > 0. Show that there is a ball

B = Bδ(x∗) such that f(x) > 0 for all x ∈ B.

Answer: The set R++ = (0,+∞) is an open set. Since f is continuous, f−1(R++) is an open

set. Moreover, x∗ ∈ f−1(R++). Since x
∗ is a point in an open set, we can put an ball around it

that is in that open set. We can choose δ > 0 so that Bδ(x∗) ⊂ f−1(R++). Then f(x) > 0 for

all x ∈ Bδ(x∗).


