Homework Assignment \#5

14.2 Compute the partial derivatives of the Cobb-Douglas production function $q=k x_{1}^{a_{1}} x_{2}^{a_{2}}$ and of the Constant Elasticity of Substitution production function $q=k\left(c_{1} x_{1}^{-a}+c_{2} x_{2}^{-a}\right)^{-h / a}$, assuming all the parameters are positive.
Answer: For the Cobb-Douglas function,

$$
\frac{\partial q}{\partial x_{1}}=k a_{1} x_{1}^{a_{1}-1} x_{2}^{a_{2}}=\frac{a_{1} q}{x_{1}}
$$

and

$$
\frac{\partial q}{\partial x_{2}}=k a_{2} x_{1}^{a_{1}} x_{2}^{a_{2}-1}=\frac{a_{2} q}{x_{2}} .
$$

For the CES production function,

$$
\frac{\partial q}{\partial x_{1}}=h k c_{1} x_{1}^{-1-a}\left(c_{1} x_{1}^{-a}+c_{2} x_{2}^{-a}\right)^{-1-h / a}
$$

and

$$
\frac{\partial q}{\partial x_{2}}=h k c_{2} x_{2}^{-1-a}\left(c_{1} x_{1}^{-a}+c_{2} x_{2}^{-a}\right)^{-1-h / a}
$$

14.4 Consider the production function $\mathrm{Q}=9 \mathrm{~L}^{2 / 3} \mathrm{~K}^{1 / 3}$.
a) What is the output when $\mathrm{L}=1000$ and $\mathrm{K}=216$?

Answer: Here $1000=10^{3}$ and $216=6^{3}$, so $Q=9(100)(6)=5400$.
b) Use marginal analysis to estimate $\mathrm{Q}(998,216)$ and $\mathrm{Q}(1000,217.5)$.

Answer: $\operatorname{Now} \mathrm{Q}(998,216) \approx 5400-2(\partial \mathrm{Q} / \partial \mathrm{L})$ and $\mathrm{Q}(1000,217.5) \approx 5400+1.5(\partial \mathrm{Q} / \partial \mathrm{K})$.
Here $(\partial \mathrm{Q} / \partial \mathrm{L})(1000,216)=3.6$ and $(\partial \mathrm{Q} / \partial \mathrm{K})(1000,216)=25 / 3$, so the approximate values are $\mathrm{Q}(998,2 \mathrm{I} 6) \approx 5392.8$ and $\mathrm{Q}(1000,2 \mathrm{I} 7.5) \approx 54 \mathrm{I} 2.5$.
c) Use a calculator to compute these two values of Q to three decimal places and compare these values with your estimates in b.
Answer: According to the calculator, $\mathrm{Q}(998,216) \approx 5392.798$, a discrepancy of 0.002 and $\mathrm{Q}(1000,217.5) \approx 5412.47 \mathrm{I}$, a discrepancy of 0.029 .
d) How big must $\Delta \mathrm{L}$ be in order for the difference between $\mathrm{Q}(1000+\Delta \mathrm{L}, 216)$ and its linear approximation, $\mathrm{Q}(1000,216)+(\partial \mathrm{Q} / \partial \mathrm{L})(1000,216) \Delta \mathrm{L}$, to differ by more than 2 units? (Plug increasing values of L into these two expressions.)

Answer: Here $\mathrm{Q}(1000,216)+(\partial \mathrm{Q} / \partial \mathrm{L})(1000,216) \Delta \mathrm{L}=5400+3.6 \Delta \mathrm{~L}$ and $\mathrm{Q}(1000+$ $\Delta \mathrm{L}, 216)=54(1000+\Delta \mathrm{L})^{2 / 3}$. Using a spreadsheet, I found that at $\Delta \mathrm{L}=58.48$ the difference is just over 2 units (2.0004). The same was true at $\Delta \mathrm{L}=-57$, where the difference was 2.0005 .
14.8 Use differentials to approximate each of the following:
a) $f(x, y)=x^{4}+2 x^{2} y^{2}+x y^{4}+10 y$ at $x=10.36$ and $y=1.04 ;$

Answer: $\mathrm{df}=\left(4 x^{3}+4 x y^{2}+y^{4}\right) d x+\left(4 x^{2} y+4 x y^{3}+10\right) d y$. We evaluate this at the point $(I 0, I)$, obtaining $d f=404 I d x+450 d y$. Replacing $d x$ by $\Delta x=.36$ and $d y$ by $\Delta \mathrm{y}=.04$, we find $\Delta \mathrm{f} \approx 404 \mathrm{I}(.36)+450(.04)=1454.76+18=1472.76$. Since $f(I 0, I)=10220$, the approximate value of the function is II 692.76 while the actual value is about II744.3.
b) $f(x, y)=6 x^{2 / 3} y^{1 / 2}$ at $x=998$ and $y=101.5$;

Answer: Here we approximate around $(x, y)=(1000,100)$, where $f(1000,100)=6000$. Then $d f=4 x^{-1 / 3} y^{1 / 2} d x+3 x^{2 / 3} y^{-1 / 2} d y$. Evaluating at $(1000,100)$, we find $d f=$ $4 d x+30 d y$. Replacing $d x$ by $\Delta x=-2$ and $d y$ by $\Delta y=1.5$, we find $\Delta f \approx-8+45=37$, so $f(998, I 0 I .5) \approx 6037$. In comparison, the actual value is about 6036.77.
c) $f(x, y, z)=\sqrt{x^{1 / 2}+y^{1 / 3}+5 z^{2}}$ at $x=4.2, y=7.95$, and $z=1.02$.

Answer: Here we evaluate around the point $(x, y, z)=(4,8, I)$. Note that $f(4,8, I)=3$. Then

$$
\mathrm{df}=\frac{1}{2 \sqrt{x^{1 / 2}+y^{1 / 3}+5 z^{2}}}\left[\frac{1}{2} x^{-1 / 2} d x+\frac{1}{3} y^{-2 / 3} d y+10 z d z\right] .
$$

At $(4,8,1)$, this becomes $\frac{1}{6}\left[\frac{1}{4} d x+\frac{1}{12} d y+10 d z\right]$. We use $\Delta x=0.2, \Delta y=-0.05$, and $\Delta z=0.02$. This yields $\Delta f \approx 0.04097$, so $f(4.2,7.95, \mathrm{I} .02) \approx 3.04097$, compared to the actual value of about 3.04092 .
14.28 The goal of this exercise is to examine a \mathcal{C}^{\prime} function for which the conclusion of Theorem 14.5 fails-the cross partials are not equal. Let

$$
f(x, y)=\left\{\begin{array}{cl}
0 & \text { if }(x, y)=(0,0) \\
\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}} & \text { otherwise }
\end{array}\right.
$$

a) Prove that f is zero along the x-axis and the y-axis. Conclude that $(\partial f / \partial x)(0,0)$ and $(\partial f / \partial y)(0,0)$ are both 0 .
b) Compute $\partial \mathrm{f} / \partial \mathrm{x}$ and $\partial \mathrm{f} / \partial \mathrm{y}$ for $(\mathrm{x}, \mathrm{y}) \neq(0,0)$.
c) Conclude that $(\partial f / \partial x)(0, y)=-y$ and $(\partial f / \partial x)(x, 0)=x$.
d) Show that

$$
\frac{\partial^{2} f}{\partial y \partial x}(0,0)=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)(0,0)=\lim _{y \rightarrow 0} \frac{\frac{\partial f}{\partial x}(0, y)-\frac{\partial f}{\partial x}(0,0)}{y}=-I
$$

e) Show that

$$
\frac{\partial^{2} f}{\partial x \partial y}(0,0)=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(0,0)=\lim _{x \rightarrow 0} \frac{\frac{\partial f}{\partial y}(x, 0)-\frac{\partial f}{\partial y}(0,0)}{x}=+1
$$

and conclude that the mixed partials are not equal at $(0,0)$.
f) Compute $\left(\partial^{2} f / \partial x \partial y\right)(x, y)$ for all (x, y) other than $(0,0)$.
g) Use f to show that $\left(\partial^{2} f / \partial x \partial y\right)(x, x)=0$ for $x>0$.
h) Compare e and g to show that $\left(\partial^{2} f / \partial x \partial y\right)(x, y)$ is discontinuous at the origin. Therefore, f is not \mathcal{C}^{2} and the hypotheses of Theorem 14.5 do not hold.

Answer:

a) For $y \neq 0, f(0, y)=0 / y^{2}=0$ and for $x \neq 0, f(x, 0)=0 / x^{2}=0$. Finally, $f(0,0)=0$ by definition.
b) Now

$$
\frac{\partial f}{\partial x}=\frac{3 x^{2} y-y^{3}}{x^{2}+y^{2}}-2 x \frac{x^{3} y-x y^{3}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}}
$$

and

$$
\frac{\partial f}{\partial y}=\frac{x^{3}-3 x y^{2}}{x^{2}+y^{2}}-2 y \frac{x^{3} y-x y^{3}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{5}-4 x^{3} y^{2}-x y^{4}}{\left(x^{2}+y^{2}\right)^{2}}
$$

c) For $y \neq 0,(\partial f / \partial x)(0, y)=-y^{5} / y^{4}=-y$. For $x \neq 0,\left(\frac{\partial f}{\partial y}\right)(x, 0)=x^{5} / x^{4}=x$.
d) The expression is just the difference quotient defining $\partial^{2} f / \partial x \partial y$. It is true because

$$
\frac{\frac{\partial f}{\partial y}(0, y)-\frac{\partial f}{\partial x}(0,0)}{y}=\frac{-y}{y}=-1
$$

e) The expression is just the difference quotient defining $\partial^{2} f / \partial x \partial y$. It is true because

$$
\frac{\frac{\partial f}{\partial y}(x, 0)-\frac{\partial f}{\partial y}(0,0)}{x}=\frac{x}{x}=+1 .
$$

The order of differentiation makes a difference here.
f) Now

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) \\
& =\frac{x^{8}+10 x^{6} y^{2}-10 x^{2} y^{6}-y^{8}}{\left(x^{2}+y^{2}\right)^{4}} \\
& =\frac{x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}}{\left(x^{2}+y^{2}\right)^{3}}
\end{aligned}
$$

g) Setting $y=x \neq 0$, we find

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{0}{2^{8} x^{8}}=0
$$

h) Now

$$
\lim _{x \rightarrow 0} \frac{\partial^{2} f}{\partial x \partial y}(x, x)=0 \neq+1=\frac{\partial^{2} f}{\partial x \partial y}(0,0)
$$

so the second derivative is not continuous at $(0,0)$.

