Homework Assignment #5

14.2 Compute the partial derivatives of the Cobb-Douglas production function $q = kx_1^{\alpha_1}x_2^{\alpha_2}$ and of the Constant Elasticity of Substitution production function $q = k(c_1x_1^{-\alpha} + c_2x_2^{-\alpha})^{-h/\alpha}$, assuming all the parameters are positive.

Answer: For the Cobb-Douglas function,

$$\frac{\partial q}{\partial x_1} = k a_1 x_1^{a_1 - 1} x_2^{a_2} = \frac{a_1 q}{x_1}$$

and

$$\frac{\partial q}{\partial x_2} = k a_2 x_1^{a_1} x_2^{a_2 - 1} = \frac{a_2 q}{x_2}.$$

For the CES production function,

$$\frac{\partial q}{\partial x_1} = hkc_1 x_1^{-1-a} (c_1 x_1^{-a} + c_2 x_2^{-a})^{-1-h/a}$$

and

$$\frac{\partial q}{\partial x_2} = hkc_2 x_2^{-1-a} (c_1 x_1^{-a} + c_2 x_2^{-a})^{-1-h/a}.$$

- 14.4 Consider the production function $Q = 9L^{2/3}K^{1/3}$.
 - a) What is the output when L = 1000 and K = 216?
 Answer: Here 1000 = 10³ and 216 = 6³, so Q = 9(100)(6) = 5400.
 - b) Use marginal analysis to estimate Q(998, 216) and Q(1000, 217.5).

Answer: Now Q(998, 216) \approx 5400–2(∂ Q/ ∂ L) and Q(1000, 217.5) \approx 5400+1.5(∂ Q/ ∂ K). Here (∂ Q/ ∂ L)(1000, 216) = 3.6 and (∂ Q/ ∂ K)(1000, 216) = 25/3, so the approximate values are Q(998, 216) \approx 5392.8 and Q(1000, 217.5) \approx 5412.5.

c) Use a calculator to compute these two values of Q to three decimal places and compare these values with your estimates in *b*.

Answer: According to the calculator, $Q(998, 216) \approx 5392.798$, a discrepancy of 0.002 and $Q(1000, 217.5) \approx 5412.471$, a discrepancy of 0.029.

d) How big must ∆L be in order for the difference between Q(1000 + ∆L, 216) and its linear approximation, Q(1000, 216) + (∂Q/∂L)(1000, 216)∆L, to differ by more than 2 units? (Plug increasing values of L into these two expressions.)

Answer: Here $Q(1000, 216) + (\partial Q/\partial L)(1000, 216)\Delta L = 5400 + 3.6\Delta L$ and $Q(1000 + \Delta L, 216) = 54(1000 + \Delta L)^{2/3}$. Using a spreadsheet, I found that at $\Delta L = 58.48$ the difference is just over 2 units (2.0004). The same was true at $\Delta L = -57$, where the difference was 2.0005.

- 14.8 Use differentials to approximate each of the following:
 - a) $f(x, y) = x^4 + 2x^2y^2 + xy^4 + 10y$ at x = 10.36 and y = 1.04; **Answer:** df = $(4x^3 + 4xy^2 + y^4) dx + (4x^2y + 4xy^3 + 10) dy$. We evaluate this at the point (10, 1), obtaining df = 4041 dx + 450 dy. Replacing dx by $\Delta x = .36$ and dy by $\Delta y = .04$, we find $\Delta f \approx 4041(.36) + 450(.04) = 1454.76 + 18 = 1472.76$. Since f(10, 1) = 10220, the approximate value of the function is 11692.76 while the actual value is about 11744.3.
 - b) $f(x, y) = 6x^{2/3}y^{1/2}$ at x = 998 and y = 101.5;

Answer: Here we approximate around (x, y) = (1000, 100), where f(1000, 100) = 6000. Then df = $4x^{-1/3}y^{1/2} dx + 3x^{2/3}y^{-1/2} dy$. Evaluating at (1000, 100), we find df = 4 dx + 30 dy. Replacing dx by $\Delta x = -2$ and dy by $\Delta y = 1.5$, we find $\Delta f \approx -8 + 45 = 37$, so $f(998, 101.5) \approx 6037$. In comparison, the actual value is about 6036.77.

c) $f(x, y, z) = \sqrt{x^{1/2} + y^{1/3} + 5z^2}$ at x = 4.2, y = 7.95, and z = 1.02.

Answer: Here we evaluate around the point (x, y, z) = (4, 8, 1). Note that f(4, 8, 1) = 3. Then

df =
$$\frac{I}{2\sqrt{x^{1/2} + y^{1/3} + 5z^2}} \left[\frac{I}{2} x^{-1/2} dx + \frac{I}{3} y^{-2/3} dy + I0z dz \right].$$

At (4, 8, 1), this becomes $\frac{1}{6} [\frac{1}{4} dx + \frac{1}{12} dy + 10 dz]$. We use $\Delta x = 0.2$, $\Delta y = -0.05$, and $\Delta z = 0.02$. This yields $\Delta f \approx 0.04097$, so f(4.2, 7.95, 1.02) \approx 3.04097, compared to the actual value of about 3.04092.

14.28 The goal of this exercise is to examine a C¹ function for which the conclusion of Theorem 14.5 fails—the cross partials are not equal. Let

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0), \\ \frac{x^3y - xy^3}{x^2 + y^2} & \text{otherwise.} \end{cases}$$

- a) Prove that f is zero along the x-axis and the y-axis. Conclude that $(\partial f/\partial x)(0,0)$ and $(\partial f/\partial y)(0,0)$ are both 0.
- b) Compute $\partial f/\partial x$ and $\partial f/\partial y$ for $(x, y) \neq (0, 0)$.

- c) Conclude that $(\partial f/\partial x)(0, y) = -y$ and $(\partial f/\partial x)(x, 0) = x$.
- d) Show that

$$\frac{\partial^2 f}{\partial y \, \partial x}(0,0) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right)(0,0) = \lim_{y \to 0} \frac{\frac{\partial f}{\partial x}(0,y) - \frac{\partial f}{\partial x}(0,0)}{y} = -1.$$

e) Show that

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)(0,0) = \lim_{x \to 0} \frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x} = +1$$

and conclude that the mixed partials are not equal at (0, 0).

- f) Compute $(\partial^2 f / \partial x \partial y)(x, y)$ for all (x, y) other than (0, 0).
- g) Use f to show that $(\partial^2 f / \partial x \partial y)(x, x) = 0$ for x > 0.
- h) Compare e and g to show that $(\partial^2 f / \partial x \partial y)(x, y)$ is discontinuous at the origin. Therefore, f is not C^2 and the hypotheses of Theorem 14.5 do not hold.

Answer:

- a) For $y \neq 0$, $f(0, y) = 0/y^2 = 0$ and for $x \neq 0$, $f(x, 0) = 0/x^2 = 0$. Finally, f(0, 0) = 0 by definition.
- b) Now

$$\frac{\partial f}{\partial x} = \frac{3x^2y - y^3}{x^2 + y^2} - 2x\frac{x^3y - xy^3}{(x^2 + y^2)^2} = \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}$$

and

$$\frac{\partial f}{\partial y} = \frac{x^3 - 3xy^2}{x^2 + y^2} - 2y\frac{x^3y - xy^3}{(x^2 + y^2)^2} = \frac{x^5 - 4x^3y^2 - xy^4}{(x^2 + y^2)^2}.$$

c) For $y \neq 0$, $(\partial f/\partial x)(0, y) = -y^5/y^4 = -y$. For $x \neq 0$, $(\frac{\partial f}{\partial y})(x, 0) = x^5/x^4 = x$.

d) The expression is just the difference quotient defining $\partial^2 f / \partial x \partial y$. It is true because

$$\frac{\frac{\partial f}{\partial y}(\mathbf{0}, y) - \frac{\partial f}{\partial x}(\mathbf{0}, \mathbf{0})}{y} = \frac{-y}{y} = -1.$$

e) The expression is just the difference quotient defining $\partial^2 f / \partial x \partial y$. It is true because

$$\frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x} = \frac{x}{x} = +1.$$

The order of differentiation makes a difference here.

f) Now

$$\frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$
$$= \frac{x^8 + 10x^6 y^2 - 10x^2 y^6 - y^8}{(x^2 + y^2)^4}$$
$$= \frac{x^6 + 9x^4 y^2 - 9x^2 y^4 - y^6}{(x^2 + y^2)^3}.$$

g) Setting $y = x \neq 0$, we find

$$\frac{\partial^2 f}{\partial x \, \partial y} = \frac{0}{2^8 x^8} = 0.$$

h) Now

$$\lim_{x \to 0} \frac{\partial^2 f}{\partial x \partial y}(x, x) = \mathbf{0} \neq +\mathbf{I} = \frac{\partial^2 f}{\partial x \partial y}(\mathbf{0}, \mathbf{0})$$

so the second derivative is not continuous at (0, 0).