Homework Assignment \#6

15.17 Consider the system of equations

$$
y^{2}+2 u^{2}+v^{2}-x y=15, \quad 2 y^{2}+u^{2}+v^{2}+x y=38
$$

at the solution $x=I, y=4, u=I$, and $v=-I$. Think of u and v as exogenous and x and y as endogenous. Use calculus to estimate the values of x and y that correspond to $u=0.9$ and $v=-$ I.I.

Answer: Rather than just "using calculus", l've made of the Implicit Function Theorem to organize everything. Calculus is still needed, but has an IFT wrapper around it.

Let

$$
g=\binom{y^{2}+2 u^{2}+v^{2}-x y}{2 y^{2}+u^{2}+v^{2}+x y}
$$

Then

$$
D g=\left(\begin{array}{cccc}
-y & 2 y-x & 4 u & 2 v \\
y & 4 y+x & 2 u & 2 v
\end{array}\right)
$$

Evaluating at $\boldsymbol{x}^{*}=(1,4, I,-I)$, we obtain

$$
\mathrm{Dg}\left(x^{*}\right)=\left(\begin{array}{cccc}
-4 & 7 & 4 & -2 \\
4 & 17 & 2 & -2
\end{array}\right)
$$

To estimate the values, we need to calculate $\left[D_{(x, y)}(u, v)\right](x *)$. By the Implicit Function Theorem, we first calculate the derivative of the first two columns of g and find out if it's invertible at $\boldsymbol{x}^{*}=(1,4, I,-I)$. Here

$$
D_{(x, y)} g\left(x^{*}\right)=\left(\begin{array}{cc}
-4 & 7 \\
4 & 17
\end{array}\right) \quad \text { and its inverse is } \quad \frac{-1}{96}\left(\begin{array}{cc}
17 & -7 \\
-4 & -4
\end{array}\right) .
$$

Then

$$
\begin{aligned}
{\left[\mathrm{D}_{(x, y)}(u, v)\right]\left(x^{*}\right) } & =-\left[\mathrm{D}_{(x, y)} \mathrm{g}\left(x^{*}\right)\right]^{-1} \mathrm{D}_{(\mathfrak{u}, v)} \mathrm{g}\left(x^{*}\right) \\
& =\frac{1}{96}\left(\begin{array}{cc}
17 & -7 \\
-4 & -4
\end{array}\right) \times\left(\begin{array}{cc}
4 & -2 \\
2 & -2
\end{array}\right) \\
& =\frac{1}{48}\left(\begin{array}{cc}
27 & -10 \\
-12 & 8
\end{array}\right)=\left(\begin{array}{cc}
9 / 16 & -5 / 24 \\
-1 / 4 & +1 / 6
\end{array}\right) .
\end{aligned}
$$

Setting $(\Delta u, \Delta v)=(-0 . I,-0 . I)$, we find

$$
\binom{\Delta x}{\Delta y}=\frac{1}{48}\left(\begin{array}{cc}
27 & -10 \\
-12 & 8
\end{array}\right) \times\binom{-0.1}{-0.1}=\frac{1}{48}\binom{-1.7}{0.4}=\binom{-0.0354}{0.00833}
$$

The estimated values are $x=0.9646$ and $y=4.00833$.
15.38 Show that $\mathrm{F}(x, y)=\left(e^{y} \cos x, e^{y} \sin x\right)$ is locally one-to-one and onto, but not globally one-toone.

Answer: We start by stating the definitions not covered in class (S\&B pg. 365).
Let x_{0} be a point in the domain of $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $F\left(x_{0}\right)=b_{0}$.
Then F is locally onto at x_{0} if, given any open ball $B_{r}\left(x_{0}\right) \subset \mathbb{R}^{n}$, there is a ball $B_{s}\left(b_{0}\right) \subset \mathbb{R}^{m}$ such that for every $\mathbf{b} \in B_{s}\left(b_{0}\right)$ there is at least one $\boldsymbol{x} \in \mathrm{B}_{\mathrm{r}}\left(x_{0}\right)$ with $\mathrm{F}(x)=\mathbf{b}$.

Similarly, F as above is locally one-to-one at x_{0} if there is a ball $B_{r}\left(x_{0}\right)$ and a ball $B_{s}\left(b_{0}\right)$ such that for every $\mathbf{b} \in B_{s}\left(b_{0}\right)$ there is at most one $x \in B_{r}\left(x_{0}\right)$ such that $F(x)=\mathbf{b}$.

The fact that F is both locally onto and locally one-to-one follows from the inverse function theorem (see the discussion on S\&B pp. 365-367). Here the Jacobian of F is

$$
D F=\left(\begin{array}{cc}
-e^{y} \sin x & e^{y} \cos x \\
e^{y} \cos x & e^{y} \sin x
\end{array}\right)
$$

As this has determinant $-e^{2 y} \sin ^{2} x-e^{2 y} \cos ^{2} x=-e^{2 y} \neq 0$, the Inverse Function Theorem applies.

That leaves the global question. For all $(x, y) \in \mathbb{R}^{2}$ and integers $n, F(x, y)=F(x+2 n \pi, y)$, so F is not globally one-to-one.

I6.I Determine the definiteness of the following symmetric matrices.
a) $\left(\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right)$
b) $\left(\begin{array}{cc}-3 & 4 \\ 4 & -5\end{array}\right)$
c) $\left(\begin{array}{cc}-3 & 4 \\ 4 & -6\end{array}\right)$
d) $\left(\begin{array}{ll}2 & 4 \\ 4 & 8\end{array}\right)$
e) $\left(\begin{array}{lll}1 & 2 & 0 \\ 2 & 4 & 5 \\ 0 & 5 & 6\end{array}\right)$
f) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2\end{array}\right)$
g) $\left(\begin{array}{llll}1 & 0 & 3 & 0 \\ 0 & 2 & 0 & 5 \\ 3 & 0 & 4 & 0 \\ 0 & 5 & 0 & 6\end{array}\right)$

Answer: In each case, we start by computing the leading principal minors. If necessary, we will compute all principal minors.
a) Positive Definite because $\boldsymbol{A}_{1}=2>0$ and $\boldsymbol{A}_{2}=1>0$.
b) Indefinite because $\boldsymbol{A}_{1}=-3<0$ and $\boldsymbol{A}_{2}=-\mathrm{I}<0$.
c) Negative Definite because $\boldsymbol{A}_{1}=-3<0$ and $\boldsymbol{A}_{2}=2>0$.
d) Positive Semidefinite because $\boldsymbol{A}_{1}=2>0, \boldsymbol{A}_{2}=0$, and $a_{22}=8>0$.
e) Indefinite because $A_{1}=I>0, A_{2}=0, A_{3}=-25<0$.
f) Negative Semidefinite because $\boldsymbol{A}_{1}=-\mathrm{I}<0, \boldsymbol{A}_{2}=0, \boldsymbol{A}_{3}=0, a_{22}=-4<0$ $a_{33}=-2<0$, and the other two second order minors are both $2>0$.
g) Indefinite because $A_{1}=1>0, A_{2}=2>0, A_{3}=-10<0$ and $A_{4}=65>0$.
16.6 Determine the definiteness of the following constrained quadratics.
a) $Q\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2}$, subject to $x_{1}+x_{2}=0$.
b) $Q\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2}$, subject to $x_{1}+x_{2}=0$.
c) $Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}+4 x_{1} x_{3}-2 x_{1} x_{2}$, subject to $x_{1}+x_{2}+x_{3}=0$ and $x_{1}+x_{2}-x_{3}=0$.
d) $Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+4 x_{1} x_{3}-2 x_{1} x_{2}$, subject to $x_{1}+x_{2}+x_{3}=0$ and $x_{1}+x_{2}-x_{3}=0$.
e) $Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-x_{3}^{2}+4 x_{1} x_{2}-6 x_{2} x_{3}$, subject to $x_{1}+x_{2}-x_{3}=0$.

Answer:

a) Here $A=\left(\begin{array}{cc}I & I \\ I & -I\end{array}\right)$ and the bordered Hessian is

$$
H=\left(\begin{array}{ccc}
0 & I & I \\
I & I & I \\
I & I & -I
\end{array}\right)
$$

There are $n=2$ variables and $m=1$ constraints, so we must look at the last leading principal minor, H_{3}. We find $\mathrm{H}_{3}=2$. It has the same sign as $(-\mathrm{I})^{n}=I$, so the constrained quadratic is negative definite.
b) Set $A=\left(\begin{array}{cc}4 & I \\ I & -\mathrm{I}\end{array}\right)$. The bordered Hessian is

$$
H=\left(\begin{array}{ccc}
0 & I & 1 \\
1 & 4 & I \\
1 & 1 & -I
\end{array}\right)
$$

Again, $n=2$ and $m=1$, so we must look at the last leading principal minor. Then $H_{3}=-I$ which has the same sign as $(-I)^{m}=-I$, so it is positive definite.
c) $\operatorname{Set} A=\left(\begin{array}{ccc}1 & -I & 2 \\ -I & 1 & 0 \\ -2 & 0 & -I\end{array}\right)$. The bordered Hessian is

$$
H=\left(\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & -1 \\
1 & 1 & 1 & -1 & 2 \\
1 & 1 & -1 & 1 & 0 \\
1 & -1 & 2 & 0 & -1
\end{array}\right)
$$

Now there are $n=3$ variables and $m=2$ constraints, so we look at the last leading principal minor. Then $H_{5}=16$ which has the same sign as $(-I)^{m}=+I$, so it is positive definite.
d) Set $\boldsymbol{A}=\left(\begin{array}{ccc}1 & -I & 2 \\ -I & I & 0 \\ 2 & 0 & I\end{array}\right)$. The bordered Hessian is

$$
\left(\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & -1 \\
1 & 1 & 1 & -1 & 2 \\
1 & 1 & -1 & 1 & 0 \\
1 & -1 & 2 & 0 & 1
\end{array}\right) .
$$

As in (c), there are $n=3$ variables and $m=2$ constraints. We again check the last leading principal minor. We find $H_{5}=I 6$, which has the same sign as $(-I)^{m}=+I$. It is positive definite.
e) Set $A=\left(\begin{array}{ccc}1 & 2 & 0 \\ 2 & 0 & -3 \\ 0 & -3 & -1\end{array}\right)$. The bordered Hessian is

$$
\left(\begin{array}{cccc}
0 & 1 & 1 & -1 \\
1 & 1 & 2 & 0 \\
1 & 2 & 0 & -3 \\
-1 & 0 & -3 & -1
\end{array}\right)
$$

There are $n=3$ variables and $m=I$ constraints, so we check the last 2 leading principal minors. We obtain $\mathrm{H}_{3}=3$ and $\mathrm{H}_{4}=4$. Both have the same sign, but the sign of H_{4} is neither $(-I)^{m}=-I$ or $(-I)^{n}=-I$, and the form is indefinite on the constraint set.
a) Prove that $2 a b \leq a^{2}+b^{2}$ for all numbers a, b.

Answer: Here $0 \leq(a-b)^{2}=a^{2}-2 a b+b^{2}$. Rearrange to complete the proof.
b) Use this result to show that

$$
\begin{aligned}
\left(x_{1}+\cdots+x_{n}\right)^{2} & =x_{1}^{2}+\cdots+x_{n}^{2}+\sum_{i<j} 2 x_{i} x_{j} \\
& \leq x_{1}^{2}+\cdots+x_{n}^{2}+(n-1)\left(x_{1}^{2}+\cdots+x_{n}^{2}\right) \\
& =n\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)
\end{aligned}
$$

Answer: The case $n=1$ is trivial. Now suppose $n>1$. $2 x_{i} x_{j} \leq\left(x_{i}^{2}+x_{j}^{2}\right)$. When we look at the sum $\sum_{i<j} 2 x_{i} x_{j} \leq \sum_{i<j} x_{i}^{2}+x_{j}^{2}$, we find that each x_{k} appears $(n-I)$ times, so $\sum_{i<j} x_{i}^{2}+x_{j}^{2}=(n-I) \sum_{i=1}^{n} x_{i}^{2}$, yielding line 2 . Line follows immediately.

This inequality can also be written as

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq n\left(\sum_{i=1} x_{i}^{2}\right) .
$$

c) Conclude that the point $\left(\mathrm{m}^{*}, \mathrm{~b}^{*}\right)$ in (14) and (15) is a global minimizer of the function S in (II).

Answer: A sufficient condition for a global maximum is that the Hessian is everywhere positive semidefinite. This is equivalent to all principal minors being non-negative. It is not enough to look at the leading principal minors.

The Hessian of S is

$$
H=\left(\begin{array}{cc}
2 \sum_{i} x_{i}^{2} & 2 \sum_{i} x_{i} \\
2 \sum_{i} x_{i} & 2 n
\end{array}\right) .
$$

The two first order principal minors are $2 \sum_{i} x_{i}^{2} \geq 0$ (the leading first order principal minor) and $2 \mathrm{n} \geq 0$ (the other first order principal minor).

There's only one second order principal minor, the determinant of H . We calculate

$$
\operatorname{det} \mathbf{H}=4\left[n\left(\sum_{i} x_{i}^{2}\right)-\left(\sum_{i} x_{i}\right)^{2}\right] .
$$

By part (b), det $\mathrm{H} \geq 0$.
All three principal minors are of H are positive semidefinite for all $(\mathrm{m}, \mathrm{b}) \in \mathbb{R}^{2}$. This shows the solution to the first order conditions is a global minimum.

