
Homework Assignment #6

15.17 Consider the system of equations

y2 + 2u2 + v2 − xy = 15, 2y2 + u2 + v2 + xy = 38,

at the solution x = 1, y = 4, u = 1, and v = −1. Think of u and v as exogenous and x and

y as endogenous. Use calculus to estimate the values of x and y that correspond to u = 0.9

and v = −1.1.

Answer: Rather than just “using calculus”, I’ve made of the Implicit Function Theorem to

organize everything. Calculus is still needed, but has an IFT wrapper around it.

Let

g =
(
y2 + 2u2 + v2 − xy
2y2 + u2 + v2 + xy

)
.

Then

Dg =
(−y 2y− x 4u 2v

y 4y+ x 2u 2v

)
.

Evaluating at x∗ = (1, 4, 1,−1), we obtain

Dg(x∗) =
(−4 7 4 −2

4 17 2 −2

)
.

To estimate the values, we need to calculate
[
D(x,y)(u, v)

]
(x∗). By the Implicit Function

Theorem, we first calculate the derivative of the first two columns of g and find out if it’s

invertible at x∗ = (1, 4, 1,−1). Here

D(x,y)g(x∗) =
(−4 7

4 17

)
and its inverse is

−1
96

(
17 −7

−4 −4

)
.

Then

[D(x,y)(u, v)](x∗) = −
[
D(x,y)g(x∗)

]−1
D(u,v)g(x∗)

=
1

96

(
17 −7

−4 −4

)
×
(

4 −2

2 −2

)
=

1
48

(
27 −10

−12 8

)
=
(

9/16 −5/24

−1/4 +1/6

)
.
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Setting (∆u,∆v) = (−0.1,−0.1), we find(
∆x

∆y

)
=

1
48

(
27 −10

−12 8

)
×
(−0.1

−0.1

)
=

1
48

(−1.7

0.4

)
=
(−0.0354

0.00833

)

The estimated values are x = 0.9646 and y = 4.00833.

15.38 Show that F(x, y) = (ey cos x, ey sin x) is locally one-to-one and onto, but not globally one-to-

one.

Answer: We start by stating the definitions not covered in class (S&B pg. 365).

Let x0 be a point in the domain of F : Rn → Rn with F(x0) = b0.

Then F is locally onto at x0 if, given any open ball Br(x0) ⊂ Rn, there is a ball Bs(b0) ⊂ Rm

such that for every b ∈ Bs(b0) there is at least one x ∈ Br(x0) with F(x) = b.

Similarly, F as above is locally one-to-one at x0 if there is a ball Br(x0) and a ball Bs(b0)

such that for every b ∈ Bs(b0) there is at most one x ∈ Br(x0) such that F(x) = b.

The fact that F is both locally onto and locally one-to-one follows from the inverse function

theorem (see the discussion on S&B pp. 365–367). Here the Jacobian of F is

DF =
(−ey sin x ey cos x

ey cos x ey sin x

)
.

As this has determinant −e2y sin2 x− e2y cos2 x = −e2y 6= 0, the Inverse Function Theorem

applies.

That leaves the global question. For all (x, y) ∈ R2 and integers n, F(x, y) = F(x+ 2nπ, y),

so F is not globally one-to-one.

16.1 Determine the definiteness of the following symmetric matrices.

a)
(

2 −1

−1 1

)
b)
(−3 4

4 −5

)
c)
(−3 4

4 −6

)
d)
(

2 4

4 8

)

e)

 1 2 0

2 4 5

0 5 6

 f)

−1 1 0

1 −1 0

0 0 −2

 g)


1 0 3 0

0 2 0 5

3 0 4 0

0 5 0 6


Answer: In each case, we start by computing the leading principal minors. If necessary, we

will compute all principal minors.

a) Positive Definite because A1 = 2 > 0 and A2 = 1 > 0.
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b) Indefinite because A1 = −3 < 0 and A2 = −1 < 0.

c) Negative Definite because A1 = −3 < 0 and A2 = 2 > 0.

d) Positive Semidefinite because A1 = 2 > 0, A2 = 0, and a22 = 8 > 0.

e) Indefinite because A1 = 1 > 0, A2 = 0, A3 = −25 < 0.

f) Negative Semidefinite because A1 = −1 < 0, A2 = 0, A3 = 0, a22 = −4 < 0

a33 = −2 < 0, and the other two second order minors are both 2 > 0.

g) Indefinite because A1 = 1 > 0, A2 = 2 > 0, A3 = −10 < 0 and A4 = 65 > 0.

16.6 Determine the definiteness of the following constrained quadratics.

a) Q(x1, x2) = x2
1 + 2x1x2 − x2

2, subject to x1 + x2 = 0.

b) Q(x1, x2) = 4x2
1 + 2x1x2 − x2

2, subject to x1 + x2 = 0.

c) Q(x1, x2, x3) = x2
1+x2

2−x2
3+4x1x3−2x1x2, subject tox1+x2+x3 = 0 and x1+x2−x3 = 0.

d) Q(x1, x2, x3) = x2
1+x2

2+x2
3+4x1x3−2x1x2, subject tox1+x2+x3 = 0 andx1+x2−x3 = 0.

e) Q(x1, x2, x3) = x2
1 − x2

3 + 4x1x2 − 6x2x3, subject to x1 + x2 − x3 = 0.

Answer:

a) Here A =
(

1 1

1 −1

)
and the bordered Hessian is

H =

 0 1 1

1 1 1

1 1 −1

 .

There are n = 2 variables and m = 1 constraints, so we must look at the last leading

principal minor,H3. We findH3 = 2. It has the same sign as (−1)n = 1, so the constrained

quadratic is negative definite.

b) Set A =
(

4 1

1 −1

)
. The bordered Hessian is

H =

 0 1 1

1 4 1

1 1 −1

 .

Again, n = 2 and m = 1, so we must look at the last leading principal minor. Then

H3 = −1 which has the same sign as (−1)m = −1, so it is positive definite.
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c) Set A =

 1 −1 2

−1 1 0

−2 0 −1

. The bordered Hessian is

H =


0 0 1 1 1

0 0 1 1 −1

1 1 1 −1 2

1 1 −1 1 0

1 −1 2 0 −1

 .

Now there are n = 3 variables and m = 2 constraints, so we look at the last leading

principal minor. Then H5 = 16 which has the same sign as (−1)m = +1, so it is positive

definite.

d) Set A =

 1 −1 2

−1 1 0

2 0 1

. The bordered Hessian is


0 0 1 1 1

0 0 1 1 −1

1 1 1 −1 2

1 1 −1 1 0

1 −1 2 0 1

 .

As in (c), there are n = 3 variables andm = 2 constraints. We again check the last leading

principal minor. We find H5 = 16, which has the same sign as (−1)m = +1. It is positive

definite.

e) Set A =

 1 2 0

2 0 −3

0 −3 −1

. The bordered Hessian is


0 1 1 −1

1 1 2 0

1 2 0 −3

−1 0 −3 −1

 .

There are n = 3 variables and m = 1 constraints, so we check the last 2 leading principal

minors. We obtain H3 = 3 and H4 = 4. Both have the same sign, but the sign of H4 is

neither (−1)m = −1 or (−1)n = −1, and the form is indefinite on the constraint set.
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17.9

a) Prove that 2ab ≤ a2 + b2 for all numbers a, b.

Answer: Here 0 ≤ (a− b)2 = a2 − 2ab+ b2. Rearrange to complete the proof.

b) Use this result to show that

(x1 + · · ·+ xn)2 = x2
1 + · · ·+ x2

n +
∑
i<j

2xixj

≤ x2
1 + · · ·+ x2

n + (n− 1)(x2
1 + · · ·+ x2

n)

= n(x2
1 + · · ·+ x2

n)

Answer: The case n = 1 is trivial. Now suppose n > 1. 2xixj ≤ (x2
i + x2

j). When we

look at the sum
∑

i<j 2xixj ≤
∑

i<j x
2
i + x2

j , we find that each xk appears (n− 1) times,

so
∑

i<j x
2
i + x2

j = (n− 1)
∑n

i=1 x
2
i, yielding line 2. Line follows immediately.

This inequality can also be written as(
n∑
i=1

xi

)2

≤ n

(∑
i=1

x2
i

)
.

c) Conclude that the point (m∗, b∗) in (14) and (15) is a global minimizer of the function S in

(11).

Answer: A sufficient condition for a global maximum is that the Hessian is everywhere

positive semidefinite. This is equivalent to all principal minors being non-negative. It is not

enough to look at the leading principal minors.

The Hessian of S is

H =
(

2
∑

i x
2
i 2

∑
i xi

2
∑

i xi 2n

)
.

The two first order principal minors are 2
∑

i x
2
i ≥ 0 (the leading first order principal

minor) and 2n ≥ 0 (the other first order principal minor).

There’s only one second order principal minor, the determinant of H. We calculate

detH = 4

[
n

(∑
i

x2
i

)
−
(∑

i

xi

)2
]
.

By part (b), detH ≥ 0.

All three principal minors are of H are positive semidefinite for all (m,b) ∈ R2. This

shows the solution to the first order conditions is a global minimum.


