Homework Assignment #6

15.17 Consider the system of equations

$$y^2 + 2u^2 + v^2 - xy = 15$$
, $2y^2 + u^2 + v^2 + xy = 38$,

at the solution x = 1, y = 4, u = 1, and v = -1. Think of u and v as exogenous and v and v as endogenous. Use calculus to estimate the values of v and v that correspond to v = 0.9 and v = -1.1.

Answer: Rather than just "using calculus", I've made of the Implicit Function Theorem to organize everything. Calculus is still needed, but has an IFT wrapper around it.

Let

$$g = \begin{pmatrix} y^2 + 2u^2 + v^2 - xy \\ 2y^2 + u^2 + v^2 + xy \end{pmatrix}.$$

Then

$$Dg = \begin{pmatrix} -y & 2y - x & 4u & 2v \\ y & 4y + x & 2u & 2v \end{pmatrix}.$$

Evaluating at $x^* = (1, 4, 1, -1)$, we obtain

$$Dg(x^*) = \begin{pmatrix} -4 & 7 & 4 & -2 \\ 4 & 17 & 2 & -2 \end{pmatrix}.$$

To estimate the values, we need to calculate $[D_{(x,y)}(u,v)](x*)$. By the Implicit Function Theorem, we first calculate the derivative of the first two columns of g and find out if it's invertible at $x^* = (1,4,1,-1)$. Here

$$D_{(x,y)}g(x^*)=\begin{pmatrix} -4 & 7\\ 4 & 17 \end{pmatrix} \quad \text{and its inverse is} \quad \frac{-1}{96}\begin{pmatrix} 17 & -7\\ -4 & -4 \end{pmatrix}.$$

Then

$$\begin{split} [D_{(x,y)}(u,v)](x^*) &= - \big[D_{(x,y)} g(x^*) \big]^{-1} D_{(u,v)} g(x^*) \\ &= \frac{1}{96} \begin{pmatrix} 17 & -7 \\ -4 & -4 \end{pmatrix} \times \begin{pmatrix} 4 & -2 \\ 2 & -2 \end{pmatrix} \\ &= \frac{1}{48} \begin{pmatrix} 27 & -10 \\ -12 & 8 \end{pmatrix} = \begin{pmatrix} 9/16 & -5/24 \\ -1/4 & +1/6 \end{pmatrix}. \end{split}$$

Setting $(\Delta u, \Delta v) = (-0.1, -0.1)$, we find

$$\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \frac{1}{48} \begin{pmatrix} 27 & -10 \\ -12 & 8 \end{pmatrix} \times \begin{pmatrix} -0.1 \\ -0.1 \end{pmatrix} = \frac{1}{48} \begin{pmatrix} -1.7 \\ 0.4 \end{pmatrix} = \begin{pmatrix} -0.0354 \\ 0.00833 \end{pmatrix}$$

The estimated values are x = 0.9646 and y = 4.00833.

15.38 Show that $F(x, y) = (e^y \cos x, e^y \sin x)$ is locally one-to-one and onto, but not globally one-to-one.

Answer: We start by stating the definitions not covered in class (S&B pg. 365).

Let x_0 be a point in the domain of $F: \mathbb{R}^n \to \mathbb{R}^n$ with $F(x_0) = b_0$.

Then F is **locally onto** at x_0 if, given any open ball $B_r(x_0) \subset \mathbb{R}^n$, there is a ball $B_s(b_0) \subset \mathbb{R}^m$ such that for every $b \in B_s(b_0)$ there is at least one $x \in B_r(x_0)$ with F(x) = b.

Similarly, F as above is **locally one-to-one** at x_0 if there is a ball $B_r(x_0)$ and a ball $B_s(b_0)$ such that for every $b \in B_s(b_0)$ there is at most one $x \in B_r(x_0)$ such that F(x) = b.

The fact that F is both locally onto and locally one-to-one follows from the inverse function theorem (see the discussion on S&B pp. 365–367). Here the Jacobian of F is

DF =
$$\begin{pmatrix} -e^{y} \sin x & e^{y} \cos x \\ e^{y} \cos x & e^{y} \sin x \end{pmatrix}.$$

As this has determinant $-e^{2y} \sin^2 x - e^{2y} \cos^2 x = -e^{2y} \neq 0$, the Inverse Function Theorem applies.

That leaves the global question. For all $(x, y) \in \mathbb{R}^2$ and integers n, $F(x, y) = F(x + 2n\pi, y)$, so F is not globally one-to-one.

16.1 Determine the definiteness of the following symmetric matrices.

a)
$$\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} -3 & 4 \\ 4 & -5 \end{pmatrix}$ c) $\begin{pmatrix} -3 & 4 \\ 4 & -6 \end{pmatrix}$ d) $\begin{pmatrix} 2 & 4 \\ 4 & 8 \end{pmatrix}$
e) $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 5 \\ 0 & 5 & 6 \end{pmatrix}$ f) $\begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$ g) $\begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 2 & 0 & 5 \\ 3 & 0 & 4 & 0 \\ 0 & 5 & 0 & 6 \end{pmatrix}$

Answer: In each case, we start by computing the leading principal minors. If necessary, we will compute all principal minors.

a) Positive Definite because $A_1 = 2 > 0$ and $A_2 = 1 > 0$.

- b) Indefinite because $A_1 = -3 < 0$ and $A_2 = -1 < 0$.
- c) Negative Definite because $A_1 = -3 < 0$ and $A_2 = 2 > 0$.
- d) Positive Semidefinite because $A_1 = 2 > 0$, $A_2 = 0$, and $a_{22} = 8 > 0$.
- e) Indefinite because $A_1 = 1 > 0$, $A_2 = 0$, $A_3 = -25 < 0$.
- f) Negative Semidefinite because $A_1=-1<0$, $A_2=0$, $A_3=0$, $a_{22}=-4<0$ $a_{33}=-2<0$, and the other two second order minors are both 2>0.
- g) Indefinite because $A_1 = 1 > 0$, $A_2 = 2 > 0$, $A_3 = -10 < 0$ and $A_4 = 65 > 0$.
- 16.6 Determine the definiteness of the following constrained quadratics.
 - a) $Q(x_1, x_2) = x_1^2 + 2x_1x_2 x_2^2$, subject to $x_1 + x_2 = 0$.
 - b) $Q(x_1, x_2) = 4x_1^2 + 2x_1x_2 x_2^2$, subject to $x_1 + x_2 = 0$.
 - c) $Q(x_1, x_2, x_3) = x_1^2 + x_2^2 x_3^2 + 4x_1x_3 2x_1x_2$, subject to $x_1 + x_2 + x_3 = 0$ and $x_1 + x_2 x_3 = 0$.
 - d) $Q(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_3 2x_1x_2$, subject to $x_1 + x_2 + x_3 = 0$ and $x_1 + x_2 x_3 = 0$.
 - e) $Q(x_1, x_2, x_3) = x_1^2 x_3^2 + 4x_1x_2 6x_2x_3$, subject to $x_1 + x_2 x_3 = 0$.

Answer:

a) Here $A = \begin{pmatrix} I & I \\ I & -I \end{pmatrix}$ and the bordered Hessian is

$$H = \begin{pmatrix} 0 & I & I \\ I & I & I \\ I & I & -I \end{pmatrix}.$$

There are n=2 variables and m=1 constraints, so we must look at the last leading principal minor, H_3 . We find $H_3=2$. It has the same sign as $(-1)^n=1$, so the constrained quadratic is **negative definite**.

b) Set $A = \begin{pmatrix} 4 & 1 \\ 1 & -1 \end{pmatrix}$. The bordered Hessian is

$$H = \begin{pmatrix} 0 & I & I \\ I & 4 & I \\ I & I & -I \end{pmatrix}.$$

Again, n=2 and m=1, so we must look at the last leading principal minor. Then $H_3=-1$ which has the same sign as $(-1)^m=-1$, so it is **positive definite**.

c) Set
$$A = \begin{pmatrix} I & -I & 2 \\ -I & I & 0 \\ -2 & 0 & -I \end{pmatrix}$$
. The bordered Hessian is

$$H = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & -1 \\ 1 & 1 & 1 & -1 & 2 \\ 1 & 1 & -1 & 1 & 0 \\ 1 & -1 & 2 & 0 & -1 \end{pmatrix}.$$

Now there are n=3 variables and m=2 constraints, so we look at the last leading principal minor. Then $H_5=16$ which has the same sign as $(-1)^m=+1$, so it is **positive** definite.

d) Set
$$A = \begin{pmatrix} I & -I & 2 \\ -I & I & 0 \\ 2 & 0 & I \end{pmatrix}$$
. The bordered Hessian is

$$\begin{pmatrix} 0 & 0 & I & I & I \\ 0 & 0 & I & I & -I \\ I & I & I & -I & 2 \\ I & I & -I & I & 0 \\ I & -I & 2 & 0 & I \end{pmatrix}.$$

As in (c), there are n=3 variables and m=2 constraints. We again check the last leading principal minor. We find $H_5=16$, which has the same sign as $(-1)^m=+1$. It is **positive definite**.

e) Set
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & -3 \\ 0 & -3 & -1 \end{pmatrix}$$
. The bordered Hessian is

$$\begin{pmatrix} 0 & I & I & -I \\ I & I & 2 & 0 \\ I & 2 & 0 & -3 \\ -I & 0 & -3 & -I \end{pmatrix}.$$

There are n=3 variables and m=1 constraints, so we check the last 2 leading principal minors. We obtain $H_3=3$ and $H_4=4$. Both have the same sign, but the sign of H_4 is neither $(-1)^m=-1$ or $(-1)^n=-1$, and the form is **indefinite** on the constraint set.

17.9

a) Prove that $2ab \le a^2 + b^2$ for all numbers a, b.

Answer: Here $0 \le (a - b)^2 = a^2 - 2ab + b^2$. Rearrange to complete the proof.

b) Use this result to show that

$$(x_1 + \dots + x_n)^2 = x_1^2 + \dots + x_n^2 + \sum_{i < j} 2x_i x_j$$

$$\leq x_1^2 + \dots + x_n^2 + (n - 1)(x_1^2 + \dots + x_n^2)$$

$$= n(x_1^2 + \dots + x_n^2)$$

Answer: The case n=1 is trivial. Now suppose n>1. $2x_ix_j \leq (x_i^2+x_j^2)$. When we look at the sum $\sum_{i< j} 2x_ix_j \leq \sum_{i< j} x_i^2+x_j^2$, we find that each x_k appears (n-1) times, so $\sum_{i< j} x_i^2+x_j^2=(n-1)\sum_{i=1}^n x_i^2$, yielding line 2. Line follows immediately.

This inequality can also be written as

$$\left(\sum_{i=1}^n x_i\right)^2 \le n \left(\sum_{i=1}^n x_i^2\right).$$

c) Conclude that the point (m^*, b^*) in (14) and (15) is a global minimizer of the function S in (11).

Answer: A sufficient condition for a global maximum is that the Hessian is everywhere positive semidefinite. This is equivalent to all principal minors being non-negative. It is not enough to look at the leading principal minors.

The Hessian of S is

$$H = \begin{pmatrix} 2\sum_{i} x_{i}^{2} & 2\sum_{i} x_{i} \\ 2\sum_{i} x_{i} & 2n \end{pmatrix}.$$

The two first order principal minors are $2\sum_i x_i^2 \ge 0$ (the leading first order principal minor) and $2n \ge 0$ (the other first order principal minor).

There's only one second order principal minor, the determinant of H. We calculate

$$\det H = 4 \left[n \left(\sum_{i} x_{i}^{2} \right) - \left(\sum_{i} x_{i} \right)^{2} \right].$$

By part (b), $\det H \geq 0$.

All three principal minors are of H are positive semidefinite for all $(m,b) \in \mathbb{R}^2$. This shows the solution to the first order conditions is a global minimum.