
Homework Assignment #7

18.2 Find the maximum and minimum distance from the origin to the ellipse x2 + xy + y2 = 3.

[Hint: Use x2 + y2 as your objective function.]

Answer: The problem is to maximize (minimize) x2 + y2 subject to the constraint x2 + xy +

y2 = 3. Note that the constraint function has derivative dh = (2x + y, x + 2y) which is

non-zero on the ellipse x2 + xy + y2 = 3. This establishes constraint qualification.

We then form the Lagrangian L = x2 + y2 − λ(x2 + xy + y2 − 3), which yields first-order

conditions

0 = 2x− λ(2x + y)

0 = 2y− λ(x + 2y).

We divide to eliminate λ, obtaining x/y = (2x + y)/(2y + x). Clearing the fractions yields

x2 = y2.

There are two cases: x = y and x = −y. Substituting into the constraint, we find that the

first has solution x = ±1 and the second has solution x = ±
√

3. The resulting critical points

are ±(1, 1) and ±(
√

3,−
√

3). The first two minimize the distance (
√

2) and the second two

maximize it (
√

6).

18.7 Maximize f(x, y, z) = yz + xz subject to y2 + z2 = 1 and xz = 3.

Answer: #1 (shortcut): We can use the constraint on xz to simplify the objective to 3 + yz.

Since the 3 is irrelevant, we are just maximizing yz subject to the constraint y2 + z2 = 1.

Then dh = (2y, 2z) 6= (0, 0) since y2 + z2 = 1, showing that NDCQ is satisfied.

The Lagrangian is L = yz + λ(y2 + z2 − 1) and the first order conditions are

0 = z + 2yλ

0 = y + 2zλ.

Eliminating λ, we find y2 = z2 = 1/2. Then y = ±
√

1/2, z = ±
√

1/2. The objective is

maximized when both have the same sign, as do x and z, so the maxima occur at (x, y, z) =

±(3
√

2,
√

1/2,
√

1/2) when yx = 1/2 and the maximium value is 3 + 1/2 = 3.5.

#2 (long version): The derivative of the constraints is

[

0 2y 2z

z 0 x

]

.
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The constraint xz = 3 implies z 6= 0, and the matrix has rank 2. Constraint qualification holds.

The Lagrangian is L = yz+xz−µ(y2 + z2 −1)−ν(xz−3). The first-order conditions are

0 = z− νz,

0 = z− 2µy,

0 = x + y− 2µz− νx.

Since z 6= 0, we find ν = 1 from the first equation. The third equation then becomesy = 2µz.

Combining with the second equation, we find y = 4µ2y. Now if y = 0, z = 0, which is

impossible. Thus µ = 1/2 or µ = −1/2.

In the first case, z = y = ±1/
√

2 and in the second case z = −y = ±1/
√

2. The four

solutions are (3
√

2, 1/
√

2, 1/
√

2) and (−3
√

2,−1/
√

2,−1/
√

2), which are both maxima at

3.5, and (−3
√

2, 1/
√

2,−1/
√

2) and (3
√

2,−1/
√

2, 1/
√

2), which both minima at 2.5.

18.13 Show that the budget inequality constraint is binding in Example 18.8 even in the presence of

the non-negativity constraints x1 ≥ 0, x2 ≥ 0. In the process, check the NDCQ for this more

general problem.

Answer: Example 18.8 is based on Example 18.1, which is

max U(x)

s.t p·x ≤ I

x ≥ 0

Example 18.8 considers the case of two goods with p ≫ 0. We also assume DU(x) ≥ 0

Unlike Example 18.8, we include the non-negativity constraints.

We consider NDCQ first. The matrix formed from the derivatives of the constraint functions

is:




p1 p2

−1 0

0 −1





When I > 0, at most two of the three constraints can bind simultaneously. If all three were

binding, x1 = x2 = 0, implying that p·x = 0 < I, showing that the third constraint cannot

bind.

Since pi > 0, the rank of any of the 3 matrices formed by deleting one row is 2, as required.

The rank of any of the 3 matrices formed by deleting two rows is 1, as required. Thus NDCQ

is satisfied.
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The Lagrangian is

L = U(x1, x2) − λ(p1x1 + p2x2 − I) + µ1x1 + µ2x2.

The first-order conditions are ∂U/∂x1 + µ1 = λp1, ∂U/∂x2 + µ2 = λp2. If the budget

constraint does not bind, λ = 0 by complementary slackness. The first-order conditions

reduce to

∂U

∂x1

= −µ1 ≤ 0

∂U

∂x2

= −µ2 ≤ 0.

It is impossible to satisfy these equations because Example 18.8 assumes that ∂U/∂xi > 0 for

at least one i, which implies µi < 0, violating non-negativity. This contradiction shows that the

budget constraint must bind.

19.2 Find the maximum of x + y + z2 subject to the constraints x2 + y2 + z2 = 0.8, y = 0:

a) by using Theorem 19.1 and Exercise 18.6,

b) by doing the calculation from scratch.

Answer:

a) Exercise 18.6 required us to find the maximum of f(x, y, z) = x + y + z2 subject to the

constraints x2 + y2 + z2 = 1 and y = 0.

The derivative of the constraints was
[

2x 2y 2z

0 1 0

]

.

Constraint qualification is satisfied because at least one of x and z must non-zero, yielding

rank 2.

The Lagrangian was

L = x + y + z2 − µ(x2 + y2 + z2 − 1) − νy.

The first-order conditions were

0 = 1 − 2µx,

0 = 1 − 2µy− ν,

0 = 2z− 2µz.
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Since y = 0, the second equation yielded ν = 1. The third equation was 2(1 − µ)z = 0.

(*) If z = 0, we used the constraint x2 + y2 + z2 = 1 to find either x = 1 and µ = 1/2

or x = −1 and µ = −1/2. The latter it is the minimum, so x = 1. Thus (1, 0, 0) was a

critical point.

If z 6= 0, µ = 1, and x = 1/2. Then the constraints imply either z =
√

3/2 or

z = −
√

3/2.

There were three critical points with f(1, 0, 0) = 1, f(1/2, 0,
√

3/2 = 5/4, and

f(1/2, 0,−
√

3/2) = 5/4. The latter two were maxima.

The multiplier µ = ∂f/∂a was µ = 1. Since the maximum at a = 1 was 5/4, the new

maximum should be approximately 1.25 − .2µ = 1.05.

b) The calculation follows part (a) until (*). Again there are three critical points, one with

z = 0: (
√
.8, 0, 0) and two with z 6= 0, when µ = 1 and x = 1/2. Then z = ±

√
0.55 with

f(1/2, 0,±
√
.55) = 1.05, so our estimate in part (a) was exactly correct.

19.3 If x thousand dollars is spent on labor and y thousand dollars is spent on equipment, a certain

factory produces Q(x, y) = 50x1/2y2 units of output.

a) How should $80,000 be allocated between labor and equipment to yield the largest possible

output?

b) Use Theorem 19.1 to estimate the change in maximum output if this allocation decreased

by $1000.

c) Compute the exact change in b).

Answer:

a) We to maximize Q = 50x1/2y2 subject to the constraint that x + y = 80. The Lagrangian

is L = 50x1/2y2 − µ(x + y− 80). The resulting first order conditions are

µ = 25x−1/2y2

µ = 100x1/2y.

Eliminating µ, we find that y = 4x. The solution is x = 16, y = 64, µ = 25600. The

value of output is $819,200.

b) By Theorem 19.1, the estimated change in the value of output is µ × −1 = −25600,

reducing it to $793, 600.

c) We must still spend in a 4-1 ratio, so x = 15.8, y = 63.2. Substituting in the production

function, we find output is now worth $793, 839.50. The actual change is −$25, 360.50,

slightly smaller than the approximation of −$25, 600.


