Homework Assignment \#7

18.2 Find the maximum and minimum distance from the origin to the ellipse $x^{2}+x y+y^{2}=3$. [Hint: Use $x^{2}+y^{2}$ as your objective function.]
Answer: The problem is to maximize (minimize) $x^{2}+y^{2}$ subject to the constraint $x^{2}+x y+$ $y^{2}=3$. Note that the constraint function has derivative $d h=(2 x+y, x+2 y)$ which is non-zero on the ellipse $x^{2}+x y+y^{2}=3$. This establishes constraint qualification.

We then form the Lagrangian $\mathcal{L}=x^{2}+y^{2}-\lambda\left(x^{2}+x y+y^{2}-3\right)$, which yields first-order conditions

$$
\begin{aligned}
& 0=2 x-\lambda(2 x+y) \\
& 0=2 y-\lambda(x+2 y)
\end{aligned}
$$

We divide to eliminate λ, obtaining $x / y=(2 x+y) /(2 y+x)$. Clearing the fractions yields $x^{2}=y^{2}$.

There are two cases: $x=y$ and $x=-y$. Substituting into the constraint, we find that the first has solution $x= \pm I$ and the second has solution $x= \pm \sqrt{3}$. The resulting critical points are $\pm(I, I)$ and $\pm(\sqrt{3},-\sqrt{3})$. The first two minimize the distance $(\sqrt{2})$ and the second two maximize it $(\sqrt{6})$.
18.7 Maximize $f(x, y, z)=y z+x z$ subject to $y^{2}+z^{2}=I$ and $x z=3$.

Answer: \# I (shortcut): We can use the constraint on $x z$ to simplify the objective to $3+y z$. Since the 3 is irrelevant, we are just maximizing $y z$ subject to the constraint $y^{2}+z^{2}=1$.

Then $d h=(2 y, 2 z) \neq(0,0)$ since $y^{2}+z^{2}=1$, showing that NDCQ is satisfied.
The Lagrangian is $\mathcal{L}=y z+\lambda\left(y^{2}+z^{2}-1\right)$ and the first order conditions are

$$
\begin{aligned}
& 0=z+2 y \lambda \\
& 0=y+2 z \lambda .
\end{aligned}
$$

Eliminating λ, we find $y^{2}=z^{2}=1 / 2$. Then $y= \pm \sqrt{I / 2}, z= \pm \sqrt{I / 2}$. The objective is maximized when both have the same sign, as do x and z, so the maxima occur at $(x, y, z)=$ $\pm(3 \sqrt{2}, \sqrt{I / 2}, \sqrt{I / 2})$ when $y x=1 / 2$ and the maximium value is $3+1 / 2=3.5$.
\#2 (long version): The derivative of the constraints is

$$
\left[\begin{array}{ccc}
0 & 2 y & 2 z \\
z & 0 & x
\end{array}\right]
$$

The constraint $x z=3$ implies $z \neq 0$, and the matrix has rank 2. Constraint qualification holds.
The Lagrangian is $\mathcal{L}=y z+x z-\mu\left(y^{2}+z^{2}-1\right)-v(x z-3)$. The first-order conditions are

$$
\begin{aligned}
& 0=z-v z \\
& 0=z-2 \mu y \\
& 0=x+y-2 \mu z-v x .
\end{aligned}
$$

Since $z \neq 0$, we find $v=1$ from the first equation. The third equation then becomes $y=2 \mu z$. Combining with the second equation, we find $y=4 \mu^{2} y$. Now if $y=0, z=0$, which is impossible. Thus $\mu=1 / 2$ or $\mu=-I / 2$.

In the first case, $z=y= \pm I / \sqrt{2}$ and in the second case $z=-y= \pm I / \sqrt{2}$. The four solutions are $(3 \sqrt{2}, I / \sqrt{2}, I / \sqrt{2})$ and $(-3 \sqrt{2},-I / \sqrt{2},-I / \sqrt{2})$, which are both maxima at 3.5 , and $(-3 \sqrt{2}, I / \sqrt{2},-I / \sqrt{2})$ and $(3 \sqrt{2},-I / \sqrt{2}, I / \sqrt{2})$, which both minima at 2.5.
18.13 Show that the budget inequality constraint is binding in Example 18.8 even in the presence of the non-negativity constraints $x_{1} \geq 0, x_{2} \geq 0$. In the process, check the NDCQ for this more general problem.
Answer: Example I8.8 is based on Example I8.I, which is

$$
\begin{gathered}
\max U(x) \\
\text { s.t } p \cdot x \leq I \\
x \geq 0
\end{gathered}
$$

Example 18.8 considers the case of two goods with $p \gg 0$. We also assume $\operatorname{DU}(x) \geq 0$ Unlike Example 18.8, we include the non-negativity constraints.

We consider NDCQ first. The matrix formed from the derivatives of the constraint functions is:

$$
\left(\begin{array}{cc}
p_{1} & p_{2} \\
-I & 0 \\
0 & -I
\end{array}\right)
$$

When I >0, at most two of the three constraints can bind simultaneously. If all three were binding, $x_{1}=x_{2}=0$, implying that $p \cdot x=0<I$, showing that the third constraint cannot bind.

Since $p_{i}>0$, the rank of any of the 3 matrices formed by deleting one row is 2 , as required. The rank of any of the 3 matrices formed by deleting two rows is I, as required. Thus NDCQ is satisfied.

The Lagrangian is

$$
\mathcal{L}=U\left(x_{1}, x_{2}\right)-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-I\right)+\mu_{1} x_{1}+\mu_{2} x_{2} .
$$

The first-order conditions are $\partial \mathrm{U} / \partial \mathrm{x}_{1}+\mu_{1}=\lambda \mathrm{p}_{1}, \partial \mathrm{U} / \partial \mathrm{x}_{2}+\mu_{2}=\lambda \mathrm{p}_{2}$. If the budget constraint does not bind, $\lambda=0$ by complementary slackness. The first-order conditions reduce to

$$
\begin{aligned}
& \frac{\partial \mathrm{U}}{\partial x_{1}}=-\mu_{1} \leq 0 \\
& \frac{\partial \mathrm{U}}{\partial x_{2}}=-\mu_{2} \leq 0
\end{aligned}
$$

It is impossible to satisfy these equations because Example 18.8 assumes that $\partial \mathrm{U} / \partial \mathrm{x}_{\mathrm{i}}>0$ for at least one i, which implies $\mu_{i}<0$, violating non-negativity. This contradiction shows that the budget constraint must bind.
19.2 Find the maximum of $x+y+z^{2}$ subject to the constraints $x^{2}+y^{2}+z^{2}=0.8, y=0$:
a) by using Theorem 19.1 and Exercise 18.6,
b) by doing the calculation from scratch.

Answer:

a) Exercise 18.6 required us to find the maximum of $f(x, y, z)=x+y+z^{2}$ subject to the constraints $x^{2}+y^{2}+z^{2}=1$ and $y=0$.

The derivative of the constraints was

$$
\left[\begin{array}{ccc}
2 x & 2 y & 2 z \\
0 & 1 & 0
\end{array}\right]
$$

Constraint qualification is satisfied because at least one of x and z must non-zero, yielding rank 2.

The Lagrangian was

$$
\mathcal{L}=x+y+z^{2}-\mu\left(x^{2}+y^{2}+z^{2}-1\right)-v y .
$$

The first-order conditions were

$$
\begin{aligned}
& 0=1-2 \mu x, \\
& 0=1-2 \mu y-v, \\
& 0=2 z-2 \mu z .
\end{aligned}
$$

Since $y=0$, the second equation yielded $v=I$. The third equation was $2(I-\mu) z=0$.
$\left(^{*}\right)$ If $z=0$, we used the constraint $x^{2}+y^{2}+z^{2}=I$ to find either $x=I$ and $\mu=I / 2$ or $x=-I$ and $\mu=-I / 2$. The latter it is the minimum, so $x=I$. Thus $(I, 0,0)$ was a critical point.

If $z \neq 0, \mu=1$, and $x=1 / 2$. Then the constraints imply either $z=\sqrt{3} / 2$ or $z=-\sqrt{3} / 2$.

There were three critical points with $f(I, 0,0)=I, f(I / 2,0, \sqrt{3} / 2=5 / 4$, and $f(I / 2,0,-\sqrt{3} / 2)=5 / 4$. The latter two were maxima.

The multiplier $\mu=\partial \mathrm{f} / \partial \mathrm{a}$ was $\mu=\mathrm{I}$. Since the maximum at $\mathrm{a}=\mathrm{I}$ was $5 / 4$, the new maximum should be approximately $1.25-.2 \mu=1.05$.
b) The calculation follows part (a) until $\left(^{*}\right)$. Again there are three critical points, one with $z=0:(\sqrt{8}, 0,0)$ and two with $z \neq 0$, when $\mu=I$ and $\chi=I / 2$. Then $z= \pm \sqrt{0.55}$ with $\mathrm{f}(\mathrm{I} / 2,0, \pm \sqrt{.55})=1.05$, so our estimate in part (a) was exactly correct.
19.3 If x thousand dollars is spent on labor and y thousand dollars is spent on equipment, a certain factory produces $\mathrm{Q}(x, y)=50 x^{1 / 2} y^{2}$ units of output.
a) How should $\$ 80,000$ be allocated between labor and equipment to yield the largest possible output?
b) Use Theorem 19.I to estimate the change in maximum output if this allocation decreased by $\$ 1000$.
c) Compute the exact change in b).

Answer:

a) We to maximize $Q=50 x^{1 / 2} y^{2}$ subject to the constraint that $x+y=80$. The Lagrangian is $\mathcal{L}=50 x^{1 / 2} y^{2}-\mu(x+y-80)$. The resulting first order conditions are

$$
\begin{aligned}
& \mu=25 x^{-1 / 2} y^{2} \\
& \mu=100 x^{1 / 2} y .
\end{aligned}
$$

Eliminating μ, we find that $y=4 x$. The solution is $x=16, y=64, \mu=25600$. The value of output is $\$ 819,200$.
b) By Theorem I9.I, the estimated change in the value of output is $\mu \times-\mathrm{I}=-25600$, reducing it to \$793, 600.
c) We must still spend in a 4-I ratio, so $x=15.8, \mathrm{y}=63.2$. Substituting in the production function, we find output is now worth $\$ 793,839.50$. The actual change is $-\$ 25,360.50$, slightly smaller than the approximation of $-\$ 25,600$.

