1. Consider the matrix

$$\begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$$

- a) Find all real numbers λ where $\mathbf{A} \lambda \mathbf{I}$ is singular.
- b) For each λ found in (a), find a non-zero vector **b** with $(\mathbf{A} \lambda \mathbf{I})\mathbf{b} = \mathbf{0}$.
- c) Do the vectors found in part (b) form a basis for \mathbb{R}^2 ?

Answer:

- a) Set det $(\mathbf{A} \lambda \mathbf{I}) = 0$ and solve for λ to find the λ where \mathbf{A} is singular. Expanding the determinant yields $\lambda^2 6\lambda + 8 = 0$, which has solutions $\lambda = 2$ and $\lambda = 4$.
- b) For $\lambda = 2$, we need **b** obeying

$$(\mathbf{A} - 2\mathbf{I})\mathbf{b} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}\mathbf{b} = \mathbf{0}.$$

One such vector is $\mathbf{b}_1 = (1, 1)$. For $\lambda = 4$, we need \mathbf{b} obeying

$$(\mathbf{A} - 4\mathbf{I})\mathbf{b} = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}\mathbf{b} = \mathbf{0}$$

One such vector is $\mathbf{b}_2 = (1, -1)$.

- c) We use the determinant test. Since $\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -1 1 = -2 \neq 0$, the vectors $\{\mathbf{b}_1, \mathbf{b}_2\}$ form a basis for \mathbb{R}^2 .
- 2. Consider the following norms on \mathbb{R}^3 . The ℓ^3 norm $\|\mathbf{x}\|_3 = (|x_1|^3 + |x_2|^3 + |x_3|^3)^{1/3}$, and the sup-norm $\|\mathbf{x}\|_{\infty} = \max\{|x_1|, |x_2|, |x_3|\}$. (corrected)

Show that these norms are equivalent on \mathbb{R}^3 by finding positive numbers A and B with $A \|\mathbf{x}\|_3 \le \|\mathbf{x}\|_{\infty} \le B \|\mathbf{x}\|_3$.

Answer: For each i = 1, 2, 3, $|x_i| \le ||\mathbf{x}||_3$. Then $||\mathbf{x}||_{\infty} = \max_i |x_i| \le ||\mathbf{x}||_3$. It follows that B = 1 works.

For each $i = 1, 2, 3, x_i^3 \le ||\mathbf{x}||_{\infty}^3$, so $||\mathbf{x}||_3 \le (3||\mathbf{x}||_{\infty}^3)^{1/3} = 3^{1/3} ||\mathbf{x}||_{\infty}$. This means that $A = 3^{-1/3}$ will do.

That gives us $\frac{1}{\sqrt[3]{3}} \|\mathbf{x}\|_3 \le \|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_3$.

3. Consider the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 5 & 2 & 3 & 4 \\ 1 & 8 & 4 & 9 & 12 \end{pmatrix}$$

- a) Find the reduced row-echelon form of A
- b) Recall ker $\mathbf{A} = \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{0}\}$. What is dim ker \mathbf{A} ?
- c) Find a basis for ker A.

Answer:

a)

$$\mathbf{A} = \begin{pmatrix} 1 & 5 & 2 & 3 & 4 \\ 1 & 8 & 4 & 9 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 5 & 2 & 3 & 4 \\ 0 & 3 & 2 & 6 & 8 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 5 & 2 & 3 & 4 \\ 0 & 1 & 2/3 & 2 & 8/3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -4/3 & -7 & -28/3 \\ 0 & 1 & 2/3 & 2 & 8/3 \end{pmatrix} =$$

- b) There are 3 free variables, x_3 , x_4 , and x_5 , so dim ker A = 3.
- c) We can find a basis systematically by taking $(x_3, x_4, x_5) = (1, 0, 0)$, (0, 1, 0), and (0, 0, 1). The result is $\mathbf{b}_1 = (4/3, -2/3, 1, 0, 0)$, $\mathbf{b}_2 = (7, -2, 0, 1, 0)$, $\mathbf{b}_3 = (28/3, -8/3, 0, 0, 1)$.
- 4. Find all vectors in \mathbb{R}^4 that are perpendicular to

$$\mathbf{x}_1 = \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}$$
 and $\mathbf{x}_2 = \begin{pmatrix} 3\\1/3\\0\\1 \end{pmatrix}$.

Answer: Such vectors z must obey $x_1 \cdot z = 0$ and $x_2 \cdot z = 0$. We can write this as a system of linear equations:

$$x_1 + x_2 + x_3 = 0$$
$$3x_1 + \frac{1}{3}x_2 + x_4 = 0$$

To solve this homogeneous system, we row-reduce the coefficient matrix

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 3 & 1/3 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -8/3 & -3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 9/8 & -3/8 \end{pmatrix}.$$

There are two free variables (x_3, x_4) and two basic variables. The solutions to this homogeneous system are the vectors perpendicular to \mathbf{x}_1 and \mathbf{x}_2 . The kernel has dimension 2. We can describe the kernel in terms of basis vectors which we find by setting $(x_3, x_4) = (1, 0)$ and $(x_3, x_4) = (0, 1)$. The result is $\mathbf{b}_1 = (1/8, -9/8, 1, 0)$ and $\mathbf{b}_2 = (-3/8, 3/8, 0, 1)$. A vector is perpendicular to both \mathbf{x}_1 and \mathbf{x}_2 if and only if it is a linear combination of \mathbf{b}_1 and \mathbf{b}_2 .