Mathematical Economics Exam \# I, September 22, 2022

1. Consider the matrix

$$
\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right)
$$

a) Find all real numbers λ where $\boldsymbol{A}-\lambda \mathbf{I}$ is singular.
$b)$ For each λ found in (a), find a non-zero vector \mathbf{b} with $(\boldsymbol{A}-\lambda \mathbf{I}) \mathbf{b}=\mathbf{0}$.
c) Do the vectors found in part (b) form a basis for \mathbb{R}^{2} ?

Answer:

a) Set $\operatorname{det}(\boldsymbol{A}-\lambda \mathbf{I})=0$ and solve for λ to find the λ where \boldsymbol{A} is singular. Expanding the determinant yields $\lambda^{2}-6 \lambda+8=0$, which has solutions $\lambda=2$ and $\lambda=4$.
b) For $\lambda=2$, we need \mathbf{b} obeying

$$
(\mathbf{A}-2 \mathbf{I}) \mathbf{b}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \mathbf{b}=\mathbf{0}
$$

One such vector is $\mathbf{b}_{1}=(1,1)$. For $\lambda=4$, we need \mathbf{b} obeying

$$
(\mathbf{A}-4 \mathbf{I}) \mathbf{b}=\left(\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right) \mathbf{b}=\mathbf{0}
$$

One such vector is $\mathbf{b}_{2}=(1,-1)$.
c) We use the determinant test. Since $\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right|=-1-1=-2 \neq 0$, the vectors $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ form a basis for \mathbb{R}^{2}.
2. Consider the following norms on \mathbb{R}^{3}. The ℓ^{3} norm $\|\boldsymbol{x}\|_{3}=\left(\left|x_{1}\right|^{3}+\left|x_{2}\right|^{3}+\left|x_{3}\right|^{3}\right)^{1 / 3}$, and the sup-norm $\|\boldsymbol{\chi}\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right\}$. (corrected)

Show that these norms are equivalent on \mathbb{R}^{3} by finding positive numbers A and B with $A\|\mathrm{x}\|_{3} \leq\|\mathrm{x}\|_{\infty} \leq B\|\mathrm{x}\|_{3}$.
Answer: For each $i=1,2,3,\left|x_{i}\right| \leq\|\boldsymbol{x}\|_{3}$. Then $\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right| \leq\|\boldsymbol{x}\|_{3}$. It follows that $B=1$ works.

For each $i=1,2,3, x_{i}^{3} \leq\|\mathbf{x}\|_{\infty}^{3}$, so $\|\mathbf{x}\|_{3} \leq\left(3\|x\|_{\infty}^{3}\right)^{1 / 3}=3^{1 / 3}\|\mathbf{x}\|_{\infty}$. This means that $A=3^{-1 / 3}$ will do.

That gives us $\frac{1}{\sqrt[3]{3}}\|\mathbf{x}\|_{3} \leq\|\boldsymbol{x}\|_{\infty} \leq\|\boldsymbol{x}\|_{3}$.
3. Consider the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 5 & 2 & 3 & 4 \\
1 & 8 & 4 & 9 & 12
\end{array}\right)
$$

a) Find the reduced row-echelon form of A
b) Recall $\operatorname{ker} \boldsymbol{A}=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\}$. What is dim $\operatorname{ker} \boldsymbol{A}$?
c) Find a basis for $\operatorname{ker} \boldsymbol{A}$.

Answer:
a)

$$
\begin{array}{r}
\mathrm{A}=\left(\begin{array}{ccccc}
1 & 5 & 2 & 3 & 4 \\
1 & 8 & 4 & 9 & 12
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & 5 & 2 & 3 & 4 \\
0 & 3 & 2 & 6 & 8
\end{array}\right) \\
\rightarrow\left(\begin{array}{ccccc}
1 & 5 & 2 & 3 & 4 \\
0 & 1 & 2 / 3 & 2 & 8 / 3
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & 0 & -4 / 3 & -7 & -28 / 3 \\
0 & 1 & 2 / 3 & 2 & 8 / 3
\end{array}\right)=
\end{array}
$$

b) There are 3 free variables, x_{3}, x_{4}, and x_{5}, so $\operatorname{dim} \operatorname{ker} \boldsymbol{A}=3$.
c) We can find a basis systematically by taking $\left(x_{3}, x_{4}, x_{5}\right)=(1,0,0),(0,1,0)$, and $(0,0,1)$. The result is $\mathbf{b}_{1}=(4 / 3,-2 / 3,1,0,0), \mathbf{b}_{2}=(7,-2,0,1,0), \mathbf{b}_{3}=$ $(28 / 3,-8 / 3,0,0,1)$.
4. Find all vectors in \mathbb{R}^{4} that are perpendicular to

$$
x_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad x_{2}=\left(\begin{array}{c}
3 \\
1 / 3 \\
0 \\
1
\end{array}\right)
$$

Answer: Such vectors \boldsymbol{z} must obey $\boldsymbol{x}_{1} \cdot \boldsymbol{z}=0$ and $\boldsymbol{x}_{2} \cdot \boldsymbol{z}=0$. We can write this as a system of linear equations:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =0 \\
3 x_{1}+\frac{1}{3} x_{2}+x_{4} & =0
\end{aligned}
$$

To solve this homogeneous system, we row-reduce the coefficient matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
3 & 1 / 3 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & -8 / 3 & -3 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 9 / 8 & -3 / 8
\end{array}\right)
$$

There are two free variables $\left(x_{3}, x_{4}\right)$ and two basic variables. The solutions to this homogeneous system are the vectors perpendicular to \boldsymbol{x}_{1} and \boldsymbol{x}_{2}. The kernel has dimension 2 . We can describe the kernel in terms of basis vectors which we find by setting $\left(x_{3}, x_{4}\right)=(1,0)$ and $\left(x_{3}, x_{4}\right)=(0,1)$. The result is $\mathbf{b}_{1}=(1 / 8,-9 / 8,1,0)$ and $\mathbf{b}_{2}=(-3 / 8,3 / 8,0,1)$. A vector is perpendicular to both \boldsymbol{x}_{1} and \boldsymbol{x}_{2} if and only if it is a linear combination of \mathbf{b}_{1} and b_{2}.

