Mathematical Economics Exam #2, October 27, 2022

1. Find the infinite Taylor series at a = 0 for e^x . Show that it converges for every x.

Answer: Each derivative of e^x is e^x . Now $e^a = e^0 = 1$. It follows that the required Taylor series is

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

We now apply the ratio test for convergence. Let $b_n = x^n/n!$ be the nth term in the series. Then

$$\limsup_{n \to +\infty} \left| \frac{b_{n+1}}{b_n} \right| = \limsup_{n \to +\infty} \left| \frac{x^{n+1}}{(n+1)!} \frac{n!}{x^n} \right| = \limsup_{n \to +\infty} \left| \frac{x}{n+1} \right| = 0$$

for every $x \in \mathbb{R}$. Since 0 < 1, the series converges at every point x. In fact, it converges uniformly.

2. Let $f(x_1, x_2, x_3) = \mathbf{p} \cdot \mathbf{x} + x_1^2 + x_2^2 + x_1 x_2 + x_1 x_2 x_3$ where $\mathbf{p} \in \mathbb{R}^3$. Compute both the Fréchet derivative *Df* and the Hessian $D^2 f$. Is the Hessian symmetric?

Answer: Since $f: \mathbb{R}^3 \to \mathbb{R}$, the Fréchet derivatives also maps $\mathbb{R}^3 \to \mathbb{R}$. In other words, it should be written as s row vector (covector). The derivative *Df* is the covector

$$Df = (p_1 + 2x_1 + x_2 + x_2x_3, p_2 + 2x_2 + x_1 + x_1x_3, p_3 + x_1x_2)$$

To obtain the Hessian, we take the second derivatives downward from Df, yielding

$$D^{2}f = \begin{pmatrix} 2 & 1 + x_{3} & x_{2} \\ 1 + x_{3} & 2 & x_{1} \\ x_{2} & x_{1} & 0 \end{pmatrix}$$

as the Hessian.

Yes, the Hessian is symmetric.

3. Define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{for } x \le 0\\ e^{-1/x^2} & \text{for } x > 0 \end{cases}$$

- a) Show that f is continuous at x = 0.
- b) Show that f' is continuous at x = 0.
- c) Show that f'' is continuous at x = 0.

Answer:

- a) For x < 0, f(x) = 0. Suppose $|x| < \delta$. Then $-\delta < x < \delta$ and $0 < x^2 < \delta^2$. It follows that $1/x^2 > 1/\delta^2$ and $e^{-1/x^2} < e^{-1/\delta^2}$. So whenever $|x| < \delta$, we can conclude $|f(x) - 0| = |f(x)| < e^{-1/\delta^2}$. Then for $0 < \varepsilon < 1$, setting $\delta = 1/\sqrt{|\ln \varepsilon|}$ implies $|f(x) - f(0)| = |f(x)| < \varepsilon$. It follows that f is continuous at x = 0.
- b) For x < 0, f'(x) = 0. For x > 0, $f'(x) = (2/x^3)e^{-1/x^2}$. The limit from both sides is zero because e^{-1/x^2} goes to zero faster than any polynomial in 1/x goes to ∞ . That means f' is continuous at 0.

The following method can be used to show the limit of f' from the right is zero. First replace $1/x^2$ by u. Here $u \to \infty$. Then we rewrite f' in terms of u, rewrite again so that the numerator and denominator both converge to $+\infty$, and use l'Hôpital's rule twice to see that the limit is zero. In detail,

$$\lim_{x \to 0} \frac{2e^{-1/x^2}}{x^{-3}} = \lim_{u \to \infty} 2u^{3/2} e^{-u} = \lim_{u \to \infty} \frac{2u^{3/2}}{e^u} = \lim_{u \to \infty} \frac{3u^{1/2}}{e^u} = \lim_{u \to \infty} \frac{3u^{-1/2}}{2e^u} = 0$$

- c) As in (b), f''(x) = 0 for x < 0. For x > 0, $f''(x) = [(4/x^6) (6/x^4)]e^{-1/x^2}$. A calculation as in (b) shows the limit as $x \to 0$ is zero.
- 4. Let C_0 be the closed interval [0, 1]. Define C_1 by removing the open middle third, $(\frac{1}{3}, \frac{2}{3})$, so $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. To obtain C_2 , we do the same thing to each interval in C_1 , so that

$$C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1].$$

Let C_n be a finite union of closed subintervals of [0, 1], written $C_n = \bigcup_{k=1}^{k_1} F_{n,k}$. Thus $C_0 = F_{0,1}$, $C_1 = F_{1,1} \cup F_{1,2}$, and $C_2 = F_{2,1} \cup F_{2,2} \cup F_{2,3} \cup F_{2,4}$.

Given C_n , inductively define C_{n+1} to be the set formed by removing the open middle third from each of subintervals F_{nk} , as we did with C_1 and C_2 .

- *a*) Determine how many subintervals are in C_n and show that each C_n is the union of finitely many closed disjoint subintervals.
- b) How long are the subintervals in C_n and what is their total length?
- c) Define $\mathfrak{C} = \bigcap_{n=0}^{\infty} C_n$. Show that \mathfrak{C} has an empty interior.

Answer:

a) Note that both C_0 and C_1 are the union of finitely many closed subintervals of [0, 1]. There is one subinterval for $C_0 = [0, 1]$ and 2 for C_1 . Suppose $C_n = \bigcup_{k=1}^{k_n} F_{n,k}$ where the $F_{n,k}$ are disjoint for $k = 1, ..., k_n$. Removing the open middle third breaks each subinterval into two subsubintervals. Since we removed the open middle third, both of the subsubintervals are closed. It follows that $k_{n+1} = 2k_n$ so $C_{n+1} = \bigcup_{k=1}^{k_{n+1}} F_{n+1,k}$ is the union of $2k_n$ closed intervals $F_{n+1,k}$. Since this is true of C_0 with $n_0 = 1$, it is true of all C_n with $n_k = 2^k$ by induction.

- b) Each time we remove the middle third from $F_{n,k}$, we create two subintervals with one third the length of $F_{n,k}$. Now $F_{0,0} = [0, 1] = C_0$ has length one, so the intervals $F_{n,k}$ all have length $(1/3)^n$. There are 2^n subintervals, so the total length of the subintervals of C_n is $(2/3)^n$. This shrinks to zero are $n \to \infty$.
- c) The set \mathfrak{C} is the well-known Cantor set. Recall that at step *n*, there are 2^n subintervals of length $(1/3)^n$ that comprise $C_n \subset \mathfrak{C}$. Suppose there is $x \in \mathfrak{C}$ and $\varepsilon > 0$ with $B_{\varepsilon}(x) \subset \mathfrak{C}$. Then for each *n* there is some k_n with $B_{\varepsilon}(x) \subset F_{n,k_n}$. But then, $2\varepsilon < (1/3)^n$ for all *n*, which is impossible. The ε ball cannot fit in $F_{n,k}$ for large *n*. It follows that the interior of \mathfrak{C} is empty.