Mathematical Economics \#2 Midterm Extra Credit

November 4, 2022

1. Find the infinite Taylor series at $a=\pi$ for $\sin x$. Show that it converges for every x. Answer: The general Taylor series formula at a is

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
$$

The derivatives of $f(x)=\sin x$ are $f^{\prime}(x)=\cos x, f^{\prime \prime}(x)=-\sin x, f^{\prime \prime \prime}(x)=-\cos x$, $f^{(4)}(x)=\sin x$, etc. When evaluated at $x=\pi$, we have $f(\pi)=0, f^{\prime}(\pi)=-1, f^{\prime \prime}(\pi)=0$, $f^{\prime \prime \prime}(\pi)=+1$, after which the pattern starts over again.

It follows that the required Taylor series is

$$
\begin{gathered}
-(x-\pi)+\frac{(x-\pi)^{3}}{3!}-\frac{(x-\pi)^{5}}{5!}+\cdots \\
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-\pi)^{2 n+1}}{(2 n+1)!}
\end{gathered}
$$

We now apply the ratio test for convergence. Let $b_{n}=(-1)^{n+1}(x-\pi)^{2 n+1} /(2 n+1)$! be the $\mathrm{n}^{\text {th }}$ term in the series. Then

$$
\begin{aligned}
\limsup _{n \rightarrow+\infty}\left|\frac{b_{n+1}}{b_{n}}\right| & =\limsup _{n \rightarrow+\infty}\left|\frac{(x-\pi)^{2 n+3}}{(2 n+3)!} \frac{(2 n+1)!}{(x-\pi)^{2 n+1}}\right| \\
& =\limsup _{n \rightarrow+\infty}\left|\frac{(x-\pi)^{2}}{(2 n+3)(2 n+2)}\right| \\
& =0
\end{aligned}
$$

for every $x \in \mathbb{R}$. Since $0<1$, the series converges at every point x. In fact, it converges uniformly.
2. Let $f\left(x_{1}, x_{2}, x_{3}\right)=\mathbf{p} \cdot \mathbf{x}+e^{x_{1}^{2}}+x_{1}^{2} x_{2}+x_{1} x_{2} x_{3}^{3}$ where $\mathbf{p} \in \mathbb{R}^{3}$. Compute both the Fréchet derivative $D f$ and the Hessian $D^{2} f$. Is the Hessian symmetric?
Answer: Since $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the Fréchet derivatives also maps $\mathbb{R}^{3} \rightarrow \mathbb{R}$. In other words, it should be written as a row vector (covector). The derivative $D f$ is the covector

$$
D f=\left(p_{1}+2 x_{1} e^{x_{1}^{2}}+2 x_{1} x_{2}+x_{2} x_{3}^{3}, p_{2}+x_{1}^{2}+x_{1} x_{3}^{3}, p_{3}+3 x_{1} x_{2} x_{3}^{2}\right) .
$$

To obtain the Hessian, we take the second derivatives downward from $D f$, yielding

$$
D^{2} f=\left(\begin{array}{ccc}
\left(2+4 x_{1}^{2}\right) e^{x_{1}^{2}}+2 x_{2} & 2 x_{1}+x_{3}^{3} & 3 x_{2} x_{3}^{2} \\
2 x_{1}+x_{3}^{3} & 0 & 3 x_{1} x_{3}^{2} \\
3 x_{2} x_{3}^{2} & 3 x_{1} x_{3}^{2} & 6 x_{1} x_{2} x_{3}
\end{array}\right)
$$

as the Hessian.
Yes, the Hessian is symmetric.
3. Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=e^{-x^{2}}
$$

a) Show that $\lim _{x \rightarrow+\infty} f(x)=0$. Here L is the limit of $f(x)$ at $+\infty$ means that for every $\varepsilon>0$ there is a $K>0$ with $|f(x)-L|<\varepsilon$ whenever $x>K$. You should use the formal definition in your answer to this part (not needed in the others).
b) Show that $\lim _{x \rightarrow+\infty} x^{\alpha} f(x)=0$ for any real number α. For $\alpha>0$, the problem here is that $x^{\alpha} \rightarrow+\infty$ while $f(x) \rightarrow 0$, so naively taking the product of the limits you would obtain $0 \cdot \infty$, which is undefined.
c) Let $p(x)=a_{n}+a_{n-1} x+\cdots+a_{0} x^{n}$ be a polynomial. Show that $\lim _{x \rightarrow+\infty} p(x) f(x)=0$.

Answer:

a) Let $1>\varepsilon>0$. We must find a K so that $f(x)<\varepsilon$ for all $x>K$. Now suppose $x>K=\sqrt{-\ln \varepsilon}$. Then $x^{2}>-\ln \varepsilon$, so $-x^{2}<\ln \varepsilon$. Then $f(x)=e^{-x^{2}}<\varepsilon$ for $x>K$.
b) We first simplify by substituting $x^{2}=u$, so we want to calculate $\lim u^{\alpha / 2} e^{-u}$. We still have the $0 \cdot \infty$ problem, but this will make our calculations easier.

We rewrite

$$
u^{\alpha / 2} e^{-u}=\frac{x^{\alpha / 2}}{e^{u}}
$$

Now the numerator and denominator both converge to $+\infty$, which allows us to apply l'Hôpital's rule which states that the limit is the limit of the ratio of the limit of the derivatives of numerator and denominator:

$$
\frac{(\alpha / 2) u^{\alpha / 2-1}}{e^{u}}
$$

If $\alpha / 2>1$, we still have the problem, but if $\alpha<2$, the numerator converges to zero, showing $x^{\alpha} e^{-x^{2}} \rightarrow 0$.

If we apply l'Hôpital's rule n times, we obtain

$$
\lim \frac{(\alpha / 2)(\alpha / 2-1) \cdots(\alpha / 2-n+1) u^{\alpha / 2-n}}{e^{u}}
$$

which is zero for $\alpha<2 n$. By applying l'Hôpital's rule n times with $n>\alpha / 2$, we show the limit is $0 / \infty=0$.
c) Since the limit of the sum is the sum of the limits, we can apply part (b) separately to each term $a_{n-k} x^{k} e^{-x^{2}}$ for $k=0, \ldots, n$. Each term converges to zero, and so does the sum. This shows that $e^{-x^{2}}$ converges to 0 as $x \rightarrow+\infty$ faster than $|p(x)|$ grows at $x \rightarrow+\infty$ for any polynomial $p(x)$.

