21. €oncave and Quasiconcave Functions

NB: The final will be given at 5pm on Tuesday, Dec. 6 in DM-164.

Convex, concave, and related functions arise naturally in economics.
They include the indirect utility function, cost function, expenditure
function, and profit function. Moreover, concavity is usually assumed of
utility as it ensures a diminishing (or at least non-increasing) marginal rate
of substitution. It often applies to production.

1. Definitions, examples, and basic properites of convex and concave
functions, upper and lower contour sets, supporting hyperplanes —
page 2.

2. Support Property Theorem, supporting contour sets — page 7.

3. Support property and the Hessian, determinant tests for convexity
and concavity — page 13.

4. Super- and subgradients, optimization of convex and concave func-
tions — page 18.

5. Quasiconcave and quasiconvex functions and their properties —
page 22.

6. Support property for quasiconcave and quasiconvex functions, su-
port via maximization, bordered Hessian test — page 32.
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21.1 Convex and Concave Functions

Recall that in any vector space, the line segment between x and y is given
by {x,y) = {(1 —t)x + ty : 0 < t < 1}, and that a set S is convex if it
contains £(x,y) whenever x,y € S.

Convex and concave functions are only defined when the domain is
convex.

Convex and Concave Functions. Let S be a convex set.

e A function f: S — R is convex if for all x,y € Sand 0 < t < 1,
f(tx + (1 — ty) < tfx) + (1 — t)f(y).

e A function f: S — R is concave if for all x,y € Sand 0 <t < 1,
f(tx + (1 —ty) > tfx) + (1 — t)f(y).
When the inequalities are strict for 0 < t < 1, we say the function is

strictly convex or strictly concave.

One consequence is that for convex functions, every chord of the graph
of the function lies on or above the graph. For concave functions, every
chord lies on or below the graph.

Convex Concave

7\

/

Figure 21.1.1: The left panel shows a convex function, where every chord
connecting any two points of the graph lies above the graph.

The right panel illustrates a concave function, and every chord connecting
any two points of the graph lies below the graph.
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21.1.1 Can a Function be Both Convex and Concave?

Yes! Both linear and affine functions are both convex and concave.

» Example 21.1.2: Convex Functions. Any linear function f(x) = p-x is
both concave and convex, as is the generic affine function f(x) = a +px.
The function f(x) = Y, xZ is convex while f(x) = Y I, x,’* is concave.
The function f(x) = e* is convex, while f(x) = Inx is concave. «

It’s also possible to have flat spots in the graph of a convex or concave
function.

/
\ /

Figure 21.1.3: This function is convex, but not strictly convex. The flat
portions of the graph rule out strict convexity.
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21.1.2 Basic Properties of Concave and Convex Functions

Several easily established properties of convex and concave functions are
collected together without proof in Theorem 21.1.4.

Theorem 21.1.4.

1.
2.

A function f is (strictly) convex if and only if —f is (strictly) concave.

A positive scalar multiple of a concave (convex) function is concave
(convex).

. The sum of two concave (convex) functions is concave (convex).

. If ¢ is concave (convex) and weakly increasing on R and f is a

concave (convex) function, then ¢ o f is concave (convex).

. The pointwise limit of a sequence of concave (convex) functions is

concave (convex).

. The infimum (supremum) of a sequence of concave (convex) func-

tions is concave (convex).

Proof. You should be able to prove these yourself.
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21.1.3 Upper and Lower Contour Sets

Let f: S — R be a function where S C R™. The upper contour set

is defined by U(y) = {x € S : f(x) > f(y)}. The lower contour set is
defined by L(y) = {x € S : f(x) < f(y)}.

» Example 21.1.5: A Convex Upper Contour Set. Figure 21.5.2 illustrates
an upper contour set for u: R%2 — R given by u(x,y) = xy.

Figure 21.1.6: The shaded area is the upper contour set U(x,) for u(x,y) =
Xy.
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21.1.4 Supporting Hyperplanes
An important concept in convex analysis is the supporting hyperplane.

Supporting Hyperplane. We say a vector p supports a set S at xo € S if
either p-x > p-x( for every x € S or p-x < p-x, for every x in S.

Of course, the set H = {x : px = pxo}is a hyperplane. So supporting
the set means that the set is on one side of the hyperplane. Moreover,
they necessarily touch at x;.

That means we can restate the definition in terms of half-spaces. A

vector p supports S at xq if and only if S is contained in the one of the
two half-spaces H* (p, p+xo) and H™(p, p-Xo). Recall that

H (p,p-x0) = {x ER™: p-x > p-Xo}.

Figure 21.1.7: The shaded area is the upper contour set U(x,) for w(x,y) =
xy. The half-space H*(p,x,) is the hatched area when x, = (1,1) and
p = (1,1). The vector p supports U(x,) at xo.
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21.2 Support Property Theorem

The Support Property Theorem shows that a differentiable function f is
concave if and only if Df(xq) supports the upper contour set at every
point where f(x) is defined, for every xo € domf. It also shows that f
is convex if and only if Df(x() supports the lower contour set at x, for
every xo € domf.

Support Property Theorem. Suppose f: U — R is €' where W s an open
convex set U C R™. The function f is concave if and only if

fly) < f(x) + [DfX)](y — %) (21.2.1)
for all x,y € U. The function f is convex if and only if
f(y) > f(x) + [Df(x)](y — x) (21.2.2)

for all x,y € U.
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21.2.1 Proof of Support Property |

Proof (Only If). We must show that the inequality 21.2.1 holds when f
is concave. Suppose f is concave and take € with 0 < e < 1.

f(x + ely —x) = £((1 — ex + ey) > ef(y) + (1 — OFX).
We can rearrange to obtain
f(x + ey — %)) — f0) > e[fly) — fx)].
Dividing by ¢ > 0 and letting ¢ — 0 yields
[Df )] (y — %) > f(y) — Fx).

When f is convex, the only change to this part of the proof is that all
three inequalities must be reversed.

Proof continues ...
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21.2.2 Proof of Support Property Il

Proof (If). Now suppose the inequality 21.2.1 holds. We must show
that f is concave.

f(y) < f(x) + [Df(x)](y — x) (21.2.1)
is satisfied for all x,y € U. Replace x by X' = x + (1 — o)y — x) =

ox + (1 — o)y where 0 < o < 1. It follows that y —x = a(y — x). By
convexity of U, x’ € U. Then

(x') — o [DF(X))] (x — y). (21.2.3)

Rewrite the support equation (21.2.1) by replacing x with x" and y with
x. Now x —x' = (1 — o)(x — y). This yields

fix) < fx) + (1 — ) [Df(x’)] (x —y). (21.2.4)

Then multiply equation (21.2.3) by (1—«), and multiply equation (21.2.4)
by «, obtaining

(1T — x)f(y)
of(x)

(1 — o)f(x") — a(1 — &) [DF(X) | (x —y) and
«f(x') + o1 — &) [DF(X)] (x — y).

IA TN

Add them together. The Df(x’) terms cancel, leaving
f(x) + (1 — ®f(y) < fX') = f(ax + (1 — ¥)y)

establishing concavity. The proof for the convex case is the same, but
with every inequality reversed. u
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21.2.3 Supporting Upper and Lower Contour Sets

One consequence of the Support Property Theorem is that if f is concave,
the derivative Df(x() supports the upper contour set U(xp) at xo. To see
this, suppose f(y) > f(xo). Then equation (21.2.1) implies

0 < fly) — fixo) < [Dfixo)](y — xo),

so Df(xg)y > Df(xo)xo. This implies U(xq) C H+(Df(xo),x0) as in
Figure 21.1.7.

Similarly, if f is convex, the derivative Df(x,) supports the lower contour
set L(xp) at xp.
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21.2.4 The Support Property in R

By the Support Property Theorem, a differentiable function is concave
if and only if equation (21.2.1) holds. This important inequality can be
taken as the definition of concavity for differentiable functions.

fly) < f(x) + [DfX)](y — %) (21.2.1)

When f is a function on a subset of the real line, we can use the right-
hand side of equation (21.2.1) to define a line, y = f(xq) + f'(x0)(x — x0).
This line is tangent to the graph of f at the point (xo, f(xo)), and the graph
of the function is in the lower half-space that the tangent line defines.
The tangent line supports the graph of f in the sense that the graph lies
within one of the half-spaces defined by the tangent.

The concave conjugate function f*(p) is the negative of the vertical
intercept of the tangent line. Although we won't explore it further at this
time, it plays an important role in economic duality.

The tangent line supports both the graph and subgraph of f at
(%0, f(x0)). The subgraph is

subf = {(x,y) : f(x) <y}.

/ sub f

Figure 21.2.1: The tangent line at x, has the equationy = f(xo) + f'(xo)(x —
Xo). Because f is concave, the tangent line supports the subgraph of f. The
graph is never above the tangent line and touches it at (xo, f(xo)). Let p =
'(xo). The vector p = (p, —1) is perpendicular to the tangent line. Its vertical
intercept is the negative of the concave conjugate function f*(p) = pxo—f(xo).
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21.2.5 Support Property in R™

In Figure 21.2.1, p = f'(xo) is the slope of the tangent line. We now
rewrite the equation of the tangent in a way that that shows it is a
hyperplane in R?. Thus

y — f(xp) = px — x0)

is rewritten as N
(p¢4)(y)=1m0—fmw. (21.2.5)

The vector p = (p,—1) is perpendicular to the tangent line, which is
parallel to (1,p), meaning that p is the slope of the tangent.

The right-hand side of equation (21.2.5) is not zero unless tangent goes
through the origin. It tells us how much the tangent line is offset from the
origin. That value is called the concave conjugate function and is denoted
f*(p) = pxo — f(xp) when p = f'(xp). In fact, f*(p) is the negative of the
vertical intercept of the tangent line. The equation of the tangent line
then becomes

(p, —1) (;‘) = (p)

and the support inequality can now be written

X o
(m—n(ﬂm)zfmy (21.2.6)

More generally, if f is a function of m variables, we can consider its
graph in R™*! "and the picture is much the same.

(Dfxo, 1) (g ) < (DFtx0, =) (1 )

where p = Df(x).
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21.3 Support Property and the Hessian

For C? functions, the support property allows us to relate convexity or
concavity and the properties of the Hessian and its principal minors.

21.3.1 Hessian Convexity Tests: Necessity

The support property can be used to show that the Hessian D?f(x) is
negative semidefinite when f is concave and positive semidefinite when
f is convex.

Theorem 21.3.1. Suppose f: U — R is €% on an open convex set U C
R™. If f is concave, then the Hessian D*f(x) is negative semidefinite for
all x € U. If fis convex, then the Hessian D*f(x) is positive semidefinite
for all x € U.

Proof. We will prove the concave case, the convex case is similar,
with inequalities reversed. By the Support Property Theorem (equation
21.2.1)

fly) < flx) + Dfx)(y —x) = f(x) — Df(x)(x — y)
reversing x and y in equation (21.2.1) yields
f(x) < f(y) + Df(y)x — y).
Adding the equations together and simplifying, we obtain
0 < (Df(y) — Df(x))(x — y).
Now set y = x + h. We then have

(Df(x + h) — Df(x))h <0.

Divide by [[h|| and let ||h|| — O, obtaining hT[D?*f(x)|h < 0. In other
words, D?f(x) is negative semidefinite for all x € U.
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21.3.2 Hessian Convexity Tests: Necessity and Sufficiency
When f is €%, we can use the Hessian matrix and Taylor’s formula to
determine whether f is concave or convex.

Theorem 21.3.2. Suppose f: U — R is € on an open convex set U C
R™.
1. The function f is concave if and only if D*f(x) is negative semidefinite
for all x € .
2. If D*f(x) is negative definite for all x € U, f is strictly concave.
3. The function f is convex if and only if D*f(x) is positive semidefinite
for all x € .
4. If Df(x) is positive definite for all x € U, f is strictly convex.

Proof. Taylor’s formula tells us that
fly) = fx) + [DfX)|(y —x) + (y — %' [D*f(2)](y —x). (21.3.7)

for some z on the line segment between x and y.

(1) If D*f is negative semidefinite on U, this implies the support prop-
erty, so f is concave by the Support Property Theorem. Conversely, if f is
concave, Proposition 21.3.7 shows that D2f(x) is negative semidefinite
on .

(2) If f is negative definite on U, equation (21.3.7) yields f(y) < f(x) +
[Df(x)](y — x) for all y # x. Repeating the calculations in the Support
Property Theorem for y # x and 0 < o« < 1, shows that f is strictly
concave.

Parts (3) and (4) are similar. u
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21.3.3 Definiteness and Determinants Reviewed
Recall the following definitions

Definite and Semidefinite Matrices. Recall that an m x m symmetric matrix
Als

(@) Positive semidefinite if xTAx < O for all x € R™,

(b) Positive definite if x"Ax < 0 for all x # 0,

(c) Negative semidefinite if xTAx < 0 for all x € R™,

(d) Negative definite if xTAx > 0 for all x # 0, and

(e) Indefinite if there are x and y with x"Ax > 0 and y"Ay < 0.

In Theorem 21.3.1 we used the support property to show that D?f(x) is
negative semidefinite when f is concave and positive semidefinite when
f is convex.

If A is a matrix, we will use Ay to denote a generic k'™-order principal
minor of A. One example of a non-leading principal minor for m = 6

and k = 3 is
a1 a1z Qe

aszp aszz  0ase
Qg1 A3 Aee

where the 2™, 4" ‘and 5™ rows and columns have been deleted. Keep
in mind that there are usually many k*-order principal minors.
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21.3.4 Convexity and Concavity: Determinant Tests
We can rewrite our results relating convexity and definiteness by applying
the usual determinant tests to the Hessian. That yields the following
theorem.
Theorem 21.3.3. Suppose f: U — R is €% on an open convex set U C
R™. Let H(x) = D?f(x) denote the Hessian of f.
1. The function f is convex if and only if every k™-order principal minor
obeys Hy(x) > O for all x € U.
2. The function f is concave if and only if every k™-order principal
minor obeys (—1)*H(x) > 0 for all x € U.

3. Suppose the leading principal minors obey Hy(x) > 0 for k =
1,...,mand all x € U. Then f is strictly convex.

4. Suppose the leading principal minors obey (—1)*Hy(x) > 0 for k =
1,...,mand all x € U. Then f is strictly concave.
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21.3.5 Using the Determinant Test
Here’s how it works for Cobb-Douglas functions on R?

» Example 21.3.4: Cobb-Douglas Utility. Consider the Cobb-Douglas
utility function on R2 , defined by u(x) = x%x;,~* with 0 < o« < 1. The
Hessian is

el T ol - g
HOO = |1 — o I ]
= ol X XTI
= O(( _0(«)|: X«?C 1X2 X1X2(x 1:|

Clearly, detH = 0. The two first-order minors are —o(1 — )x3~ le * <
0 and —a(1 — o)x%x,*~" < 0, which shows that the Hessian is negative
semidefinite on R2 . This implies that u is concave on R? , . Concavity
on R2 then follows from continuity.

The function w is not strictly concave because ocu(0) + (1 — cu(e) =
T—ax=u((1-one). <

Here’s another example.
» Example 21.3.5: CES Utility. Another example is the constant elasticity

of substitution utility function w(x) = [x;® + x,°171/? where p > —1,
p # 0. The Hessian is

1+2p
[x;° + x5 Py~ )(—x§ x1x2)
2+p 2+ —x2 /-
X Pxy? X1X2 Xq

The two first-order minors are both negative, while the second-order
minor is 0. Thus w is concave on R2 .. <«

H(x) = (1 + p)
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21.4 Non-Differentiable Functions and the Supergradient

We can often support concave functions when they are not differentiable.
However, there may be more than one vector p that supports them in
such a case. Obviously, the derivative cannot define the supporting hy-
perplane. However, derivatives can be generalized using supergradients

and subgradients.

7 X0 NS F

Figure 21.4.1: Asyou can see, there are many lines that support the function
f at (xo,f(xo)). The function has slope +1 to the left of xo and —1 to the
right. Any line with a slope between —1 and +1 that is tangent to the graph

of f at (xo, f(xo)) will satisfy the support property.

As we will see, the function in Figure 21.4.7 has a supergradient at x,,
even though it is not differentiable there.



21. CONCAVE AND QUASICONCAVE FUNCTIONS 19

21.4.1 Supergradients and Subgradients
We can define generalized derivatives for situations like Figure 21.4.1.

Supergradient. Let f be a concave function on a convex set U € R™, and
x a pointin U. If p € R™ satisfies

fly) < fx) + p-(y — x), (21.4.8)

for all y € U, we call p a supergradient of f at x.

The supergradient is a type of generalized derivative. Figure 21.4.1
illustrates this. The function there is not differentiable when x = 0, but
it does have supergradients there. Any p € [—1, +1] is a supergradient
atx = 0.

There’s also a similar generalization for convex functions, called a sub-
gradient.

Subgradient. Let f be a convex function on a convex set U C R™, and x
a pointin U. If p € R™ satisfies

fly) > f(x) + p-(y — x), (21.4.9)

for ally € U, we call p a subgradient of f at x.

The Support Function Theorem tells us that when f is differentiable
and concave (convex) Df(xy) is a supergradient (subgradient) of f at xo.
In fact, it will turn out to be the only one up to scalar multiplication (see
Theorem 21.6.2).
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21.4.2 Supergradients and Optimization

When f is concave (convex) the first order conditions are not only nec-
essary for an optimum, they are sufficient too.

Theorem 21.4.2. let U C R™ be convex.

(@) Suppose 0is a supergradient of f at x*. Then x* is a global maximizer
of f over W. In particular, this applies if f is differentiable and
Df(x*) = 0.

(b) Suppose 0 is a subgradient of f at x*. Then x* is a global minimizer

of f over U. In particular, this applies if f is differentiable and
Df(x*) = 0.

Proof. Setting p = 0 in the supergradient inequality (21.4.8), yields
fly) < f(x*) forally € U. »

This even works on some concave functions that aren’t differentiable,
as in Figure 21.4.1 where a horizontal line (p = 0) supports the function
at xo. That means x( is a maximum, as is also clear from the graph.

This result is extremely useful in economics, as we are faced with a
convex feasible set U and a concave utility function we wish to maximize
or convex function such as w-z needing to be minimized. In either case,
the first order necessary conditions become sufficient for optimization.
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End of Course, 2022

21.4.3 Convexity and Differentiable Optimization
We can go a bit further than this for differentiable functions.

Theorem 21.4.3. Let U C R™ be convex.

(@) Suppose f is a concave ©! function on U and x* obeys Df(x*)(y —
x*) < O forally € U. Then x* is a global maximizer of f on U.

(b) Suppose fis a convex @' function on U and x* obeys Df(x*)(y—x*) >
0 for all y € U. Then x* is a global minimizer of f on U.

Proof. For the concave case, if Df(x*)(y —x*) < 0, then f(y) < f(x*) +
Df(x*)(y — x*) < f(x*) by the Support Property Theorem. The convex
case is similar. u

» Example 21.4.4: Decreasing Functions. Suppose f is a decreasing €'
function of one variable on an interval [a, b]. Then f'(a)(x — a) < O for
all x € [a,b] because x — a > 0 and f'(a) < 0. It follows that a is a
maximizer of f on [a,b] <«

It works in R™ too. Here’s an example for R

» Example 21.4.5: Global Minimum via Support. Let f(x,y) = —x? — y?
on the set [0,4] x [0,3] € R2. Then Df = (—2x,—2y). We will
show that x* = (4,3) is a minimizer. Now Df(x*) = (—8,—6) and
Df(x*)(x — x*) = (—=8,—6)-(x — 4,y — 3). Here both x < 4 andy < 3,
so Df(x*)(x —x*) > 0, showing that x* is a global minimum. «
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21.5 Quasiconcave and Quasiconvex Functions

Quasiconcavity and quasiconvexity are ordinal concepts closely related
to concavity and convexity. They are defined in terms of the upper
and lower contour sets, respectively. We will see that upper and lower
contour sets are unaffected by monotonic transformations, and hence
ordinal.

21.5.1 Convexity of Upper and Lower Contour Sets |

Upper contour sets are convex for concave functions while lower contour
sets are convex for convex functions (see next page). It is often the case
that the lower contour set of a concave function is not convex. This
happens in the figure below.

» Example 21.5.1: Upper and Lower Contour Sets. The left side Fig-
ure 21.5.2 illustrates an upper contour set for u: RZ — R given by
ulx,y) = x'/3y?/3. The right side shows the lower contour set for the
same function. It is not convex.

Convex Not Convex

U(y)

Figure 21.5.2: The shaded area in the left panel is the upper contour set
U(y) forux,y) = x"3y??andy = (1,1).

The shaded area in right panel is the lower contour set for the same function.
The dashed line segment would be in L(y) if L(y) were convex. The line
segment goes outside L(y), so the lower contour set is not convex.
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21.5.2 Convexity of Upper and Lower Contour Sets Il

In Figure 21.5.2, the upper contour set was convex. This was no accident.

Rather, it is a consequence of using a concave function to define the
upper contour set.

Theorem 21.5.3. let U C R™ be a convex set.

1. If f: U — R is a concave function, then the upper contour set U(y)
IS convex.

2. If f: U — R s a convex function, then the lower contour set L(y) is
convex.

Proof. Letx,x’ € U(y). Then f(x), f(x’) > f(y). By concavity of f

f((1T—tx +tx') > (1 — tf(x) + tf(x)
> (1T = tHf(y) + tf(y)

(y),

showing that the convex combination (1 — t)x + tx’ € U(y) whenever
x,x € U(y).

The proof of part (2) is similar.
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21.5.3 Contour Sets and Quasiconcavity/Quasiconvexity

We start by noting that contour sets are ordinal, unchanged by monto-
tonic transformations of the functions.

Contour Sets are Ordinal. The sets U(x) and L(x) remain unchanged when
f is replaced at an ordinal equivalent—when a monotonic transformation
is applied to f. This is because f(x) > f(y) if and only if (¢ o f)(x) >
(b o f)(y) when ¢ is a monotonic transformation.

We now use the upper and lower contour sets to define quasiconcavity
and quasiconvexity.

Quasiconcavity and Quasiconvexity. Let f: S — R.

1. The function f is quasiconcave on S if and only if the upper contour
set U(y) = {x € S: f(x) > f(y)} is a convex set for every y € S.

2. The function f is quasiconvex on S if and only if the lower contour
set L(x) = {x € S : f(x) < f(y)} is a convex set for every y € S.

From the definition, it is easy to see that f is quasiconvex if and only
if —f is quasiconcave. Also, any increasing transformation of a concave
(or quasiconcave) function is quasiconcave and any increasing transfor-
mation of a convex (or quasiconvex) function is quasiconvex.
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21.5.4 Another Take on Quasiconcavity/Quasiconvexity

There are other ways to characterize quasiconcavity and quasiconvexity.
One is the following.

Theorem 21.5.4. Let f: S — R where S is a convex set.
1. The function f is quasiconcave if and only if for all t obeying 0 <
t <1, f(itx + (1 — t)y) > min{f(x), f(y)}.
2. The function f is quasiconvex if and only if for all t obeying0 < t < 1,
f(tx + (1 — t)y) < max{f(x), f(y)}.

Of course, if f: S — R is quasiconcave or quasiconvex on S, S must
be a convex set because if x',x” € S, convex combinations of x’ and
x" are in either {x € S : f(x) > min[f(x'), f(x")]} (f quasiconcave) or in
{x € S: f(x) < max[f(x'), f(x")]} (f quasiconvex).
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21.5.5 Monotone Functions on the Real Line

In Theorem 21.5.3 we saw that convex functions are quasiconvex and
concave functions are quasiconcave. The relationship is only one-way.

Consider monotone functions on the real line. Such functions are
either weakly increasing or weakly decreasing.’

Monotone functions on the real line are simultaneously quasiconvex
and quasiconcave! This contrasts strongly with the fact that the only
functions that are both convex and concave on R are the affine functions.

Theorem 21.5.5. Let 1 be an interval in R and f a monotone function,
f: I — R. Then f is both quasiconcave and quasiconvex.

Proof. Suppose f is monotone increasing. Then
Ux)={yel:fly >fx)}={yel:y>x}

and
Lx) ={yel: fly <fx)}={yel:y<x}

Both U(x) and L(x) are intervals in I, hence convex. This shows f is both
quasiconcave and quasiconvex.

The same argument with the inequalities reversed applies when f is
monotone decreasing. u

! Yes, monotone is used in a variety of ways.
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21.5.6 Quasiconvexity on the Real Line |

For f defined on a convex subset of R, we can completely characterize
the quasiconcave and quasiconvex functions. Quasiconcave functions
are either monotone or single peaked. Quasiconvex functions are either
monotone or single troughed.

Theorem 21.5.6. Let I be an interval in R. Suppose f: I — R.

1. The function f is quasiconcave if and only f is either monotone or
there exists a number x* such that f is weakly increasing when x < x*
and weakly decreasing when x > x*.

2. The function f is quasiconvex if and only if f is either monotone
or there exists a number x* such that f is weakly decreasing when
x < x* and weakly increasing when x > x*.

Proof. It is enough to prove the quasiconcave case as —f is quasicon-
cave if f is quasiconvex.

If case. By Theorem 21.5.5, monotone functions are quasiconcave.
We need only consider the case where x* exists. Lety € I be given
and let x; and x; be arbitrary points in the upper contour set U(y) with
X1 < X2. We must show that the interval [x1,x,] C U(y).

If x* is not in [x1,x;], then f is either always weakly decreasing or
always weakly increasing on [x1,x,]. Either way, for any z € [x1,x],
f(z) > min{f(xq), f(xp)} > f(y), so z € U(y). This shows that [xq,x2] C
U(y).

If x* € [x1,x2], f is weakly increasing on [x1, x*] and weakly decreasing
on [x*,x,]. Again, for any z € [xq,x2], f(z) > min{f(xq), f(x2)} > f(y), so
z € U(y) and hence [x1,%,] C U(y). In other words, f is quasiconcave.

Proof continues ...
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21.5.7 Quasiconvexity on the Real Line II

Only if case. We prove this part by contradiction. Suppose that f is
quasiconcave on I, but not monotone. Suppose further that x* does not
exist.

Then we can find x4, xp, and x3 in I such that x; < x, < x3 and
f(xz) < min{f(xq), f(x3)}. If f(x1) < f(x3), set y = xq, otherwise take
Yy = x3. Then the upper contour set U(y) includes x4 and x3, but not x,.
It is not convex, contradicting the fact that f is quasiconcave. u

To sum up, quasiconcave functions defined on a real interval are ei-
ther monotonic or single-peaked, while quasiconvex functions are either
monotonic or single-troughed. Either the peak or trough may be an
interval.

X2

|
|
|
|
- 1 1 { 1 1 X1

Figure 21.5.7: A quasiconcave function from [—3,3] to R. Several upper
contour sets are illustrated by the gray horizontal lines. If you project them
into the x-axis, you get the actual upper contour sets, which are defined by
{x : f(x) > y}fory = 0.5, 1, 1.5, 2,and 2.5. They are all convex, as expected
for a quasiconcave function.

With a little thought, you should be able to see that the lower contour sets,
which have the form {x : f(x) < y} consist of two disjoint closed intervals for
0 <y < 3. What happensaty = 3? y = 0?
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21.5.8 Quasiconvexity on the Real Line Il
Here’s an example of a quasiconvex function on the interval [-3, +3].

|
|
|
|
|
|
|
1

N

1 1 — X1

Figure 21.5.8: A quasiconvex function from [—3,3] to R. Several lower
contour sets are illustrated by the gray horizontal lines. If you project them
into the x-axis, you get the actual lower contour sets, which are defined by
{x : f(x) <y} fory = 0.5, 1, 1.5, 2, 2.5, and 3. They are all convex, as
expected for a quasiconvex function.

With a little thought, you should be able to see that the upper contour sets,
which have the form {x : f(x) > y} consist of two disjoint closed intervals for
0<y<3.
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21.5.9 Strict Quasiconvexity and Quasiconcavity

One consequence of Proposition 21.5.4 is that a function is quasiconcave
if for every x,y with f(x) > f(y) and every t,0 < t < 1, we have
f((1 —t)x + ty) > f(y). We can use this criterion for quasiconcavity to
define strict quasiconcavity.

Strict Quasiconcavity and Strict Quasiconvexity. Let f: S — R where S is
a convex set.

1. The function f is strictly quasiconcave on S if and only if for every
X,y € S with f(x) > f(y) and every t with 0 < t < 1, we have
f((1—tx + ty) > f(y).

2. The function f: S — R is strictly quasiconvex if and only if for every
x,Yy € S with f(x) > f(y) and every t with 0 < t < 1, we have
f((1—tx + ty) < f(y).

A strictly quasiconcave (quasiconvex) function can have at most one

maximizer (minimizer).

Theorem 21.5.9. Let f: S — R where S is a convex set. Suppose f is
strictly quasiconcave there are xo,x1 € Ssothatforally € S, f(y) < f(xy),
i =0,1. Then xg = x;.

Proof. Since both x; maximize f over S, f(x;) = f(xg). If xo # x4,
define x, = 7xo + 2x. By strict quasiconcavity, f(x,) > f(xo), showing
that xg is not a maximum. This contradiction shows that xo = x1. n

A similar result holds for minima of a strictly quasiconvex function.
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21.5.10 Quasiconvexity is Not Ordinal Convexity
It’s easy to find examples of quasiconvex functions that are not convex.

» Example 21.5.10: Quasiconvex does Not Mean Convex. Consider
fix,y) = (x2 + y*»)'/3. The function g(x,y) = x> + y? is convex (the
Hessian is 2I,). Raising it to the 1/3-power is an increasing transforma-
tion. Thus f is quasiconvex.

However, f is not convex. To see this, we compute f(0,0) = 0 and
f(1,1) = 2V/3. Then f(t,t) = 21323 > 21/3t = (1 — t)f(0,0) + tf(1,1)
for 0 < t < 1. If it were convex, the left-hand side would be no larger
than the right. Since it is larger, it is not convex. <

Even transforming the function is not good enough. Not all quasi-
concave functions are transformations of concave functions, nor are all
quasiconvex functions transformations of convex functions.

Quasiconcave functions that are ordinally equiivalent to a concave
function are called concavifiable. Similarly, a quasiconvex function that
is ordinally equivalent to a convex function is called convexifiable. There
are quasiconcave functions that are not concavifiable.?

2 This has been known since Bruno de Finetti (1949), Sulle stratificazioni convesse,
Ann. Mat. Pura Applicata 30, 173-183. The problem of finding whether a given
quasiconcave function is an increasing transformation of a concave function was posed
(in terms of level sets) by Werner Fenchel (1953), Convex Sets, Cones, and Functions,
lecture notes, Princton University, Department of Mathematics, Princeton, NJ. Although
some results are known, it still does not have a completely satisfactory solution.



32 MATH METHODS

21.6 Quasiconvex/concave Support Property

There is a support property that characterizes quasiconvex and quasi-
concave functions.

Support Property Theorem Il. Suppose f is C' on U, an open convex
subset of R™. The function f is quasiconcave if and only if for all x,y € U

f(y) > f(x) implies [Df(x)](y —x) >0 (21.6.10)

The function f is quasiconvex if and only if for all x,y € U

f(y) > f(x) implies [Df(x)](y —x) <0

Proof (Only if). Here f is quasiconcave. Suppose f(y) > f(x). Consider
(T—ex + ey =x+ ey —x) for 0 < ¢ < 1. By quasiconcavity,

f(x + ely —x)) — f(x)
£

> 0.

f(x + ey —x)) > f(x) so

Let ¢ — O to obtain [Df(x)l(y — x) > 0, which establishes the result. u
(Only If)

Proof continues ...



21. CONCAVE AND QUASICONCAVE FUNCTIONS 33
21.6.1 Support Property Theorem I, Part Il

Proof (If). Now suppose that for all x,y € U; f(y) > f(x) implies
[Df(x)](y — x) > 0. We must show that f is quasiconcave.

We do this by contradiction. If f is not quasiconcave, there are xg, X1
and 0 < to < 1 with f(xq) > flxo) and f((1 — to)xo + tox1) < f(xo).
Define

xi = (T — t)xo + tx4.

We can then write f(x,) < f(xq).

Take an interval I = [tq, to] C [0, 1] with tg € T and f(x,) < f(xq) for all
t € I, and f(x¢,) = f(x,) = f(xo).

Now if t € Twith 0 < t < 1, f(x1) > f(xg) > f(xi). But then by
equation (21.6.10),

[Df(xy)|(xo —x¢) >0 and [Df(xy)](x; —x¢) >0 (21.6.11)

Of course, xg — x¢ = t(xg —xq) and x1 —x¢ = (T — t)(x1 — xg). We
substitute into equation (21.6.11) to obtain

—t[Df(xg)|(x1 —%0) >0 and (1 —t)[Df(xy)](xq —x0) >0

Since —t < 0 and (1 — t) > 0, we must have
[Df(xy)|(x1 —%0) = 0 (21.6.12)

forallte, 0<t< 1.

Now 0 < f(xo) —f(xy,) = f(x¢,)—f(xy,), so by the Mean Value Theorem,
there is t3 € (t, tg) with

0 < f(xg) — f(x¢,) = [Df(Xu)} (X, — Xt,) = (to — 1) [Df(xb)} (X1 — Xo).

But this contradicts equation (21.6.12). That contradiction shows that f
IS quasiconcave. u
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21.6.2 Maximization and Quasiconcavity

We can use Support Property Il for f to show that any point solves a
maximization problem.

Theorem 21.6.1. Suppose f is quasiconcave and €' on a convex open
set U and that p = Df(x). Then x maximizes f(x) under the constraints
p-x <p-xandx € U.

Proof. We prove this by contradiction. If false, there is x € U with
p-x < p-x and f(x) > f(x). Then for ¢ > 0 small enough x —ep € U
(because U is open) and f(x — ep) > f(x) (by continuity). By Support
Property I, p-(x — ep) > p-x. But then, p-x > p-x + ¢|p||*> > p-x.
This contradiction proves the theorem. »

Since the constraint x € U cannot bind when U is open, X maximizes
f over all x with p-x < p-x. By Theorem 19.2.5,

h'[D*®]h <0

for all h obeying p-h = 0 or equivalently the bordered Hessian

0 T
5= 5 o
p D-f

has bordered principal minors that obey (—=1)*"'A, > 0 for n =
3,...,m+ 1. This provides a second-derivative test for quasiconcavity.
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21.6.3 Uniqueness of Supports

When f is differentiable, we can show that the derivative is the only
vector (up to scalar multiplication) that can support the upper (or lower)
contour set. More precisely, we say that p supports a set S at xq if
P-X > p-Xo whenever x € S. We apply this idea to the upper contour
set {x : f(x) > f(xo)} at xo. It is important to realize that this result does
not require quasiconcavity. However, if the function is not quasiconcave,
the upper contour set may not have supports.

Theorem 21.6.2. Suppose f is differentiable at xo with Df(xo) # 0 and
that p supports {x : f(x) > f(xq)} at xo. Then p = aDf(xq) for some
x # 0.
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21.6.4 Uniqueness of Supports: Proof
Proof. Let

Then p-z = 0 and
Df-z = |Df|* — [p-Df*/|p|*.

By the Cauchy-Schwarz inequality, either p is proportional to Df (and
we are done) or Df-z > 0.

In the case where D-fz > 0, the first-order Taylor approximation
f(xg) + a« Df-z > f(xg) shows

f(xo + az) > f(xo)
for small « > 0. Continuity of f then yields
f(xo + az — ep) > f(xo)
for ¢ > 0 small. Apply Support Property Il to obtain

Pxo<p-xo+ az—ep)

= p-xo — £||p||°
< P-Xo.

This contradiction shows Df-z > 0 is impossible. Therefore p is propor-
tional to Df(xg). n
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21.6.5 Bordered Hessian Test for Quasiconcavity

Since Ap = Df, we can instead use the bordered Hessian with Df.
The bordered principal minors are multiplied by A?, so the signs are
unchanged. This yields the following theorem.

Theorem 21.6.3. Suppose f: U — R is a C? function on some open
convex set U C R™ with m > 1. Consider the bordered Hessian

© 0 of of
872(1 o o0 872(,1-“
of 0°f 0°f
B _ 0 Df _ a_x1 a_X'% ¢ oo ax1 axm
DfT D2t : : . :
of 9% f 9% f
L Oxm Ox10xm °°° ox2 * A

1. If the bordered leading principal minors By obey (—1)""'B,, > 0 on
Uforn = 3,...,m+ 1, then f is quasiconcave on U.

2. If all non-trivial bordered leading principal minors are negative on
U, then f is quasiconvex on U.

3. If f is quasiconcave on U, then every k™ order bordered principal
minor By obeys (=1)" "B, > 0on Uforn =3,... , m+ 1.

4. If f is quasiconvex on U, then all non-trivial bordered principal
minors are non-positive on U.

Proof. For the quasiconcave case, see Arrow and Enthoven.? Applying
the result to —f yields the quasiconvex case. u

December 2, 2022
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