
30. Calculus of Several Variables II

30.6 Rolle’s Theorem

We’ve already covered Weierstrass’s Theorem in section 30.2. We use
Weierstrass’s Theorem to prove Rolle’s Theorem.1

Rolle’s Theorem. Suppose f : [a, b] → R is continuous on [a, b] and
continuously differentiable on (a, b). If f(a) = f(b) = 0, there is a point
c ∈ (a, b) with f′(c) = 0.

Rolle’s Theorem Illustrated
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Figure 30.6.1: This function goes both above and below the axes, so there
are at least two points in the closed interval [0, 4] that are extrema, obeying
f′(c) = 0. In this case there are exactly two, labeled c1 and c2.

1 Michel Rolle (1652–1719) was a French mathematician (number theory). He was
the first to publish a description of Gaussian elimination, although the idea was known
to Newton, and some cases had already been known to Chinese mathematicians by
179 AD.

Rolle proved a version of this theorem in 1691 that only applied to polynomial
functions. Cauchy derived the general version from the Mean Value Theorem. Our
proof is based on Weierstrass’s Theorem which was not available to either Cauchy or
Rolle. We follow the opposite approach from Cauchy and use Rolle’s Theorem to prove
the Mean Value Theorem.
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30.7 Proof of Rolle’s Theorem

Rolle’s Theorem. Suppose f : [a, b] → R is continuous on [a, b] and
continuously differentiable on (a, b). If f(a) = f(b) = 0, there is a point
c ∈ (a, b) with f′(c) = 0.

Proof. If f is constant on [a, b], then f(x) = 0 for all x ∈ [a, b] and so
f′(x) = 0 for all x ∈ (a, b). Any c ∈ (a, b) will do.

Otherwise, f is not constant on [a, b]. Either there is d ∈ (a, b) with
f(d) > 0 or a d ∈ (a, b) with f(d) < 0. In the former case, f has a
maximum at some c ∈ (a, b) by Weierstrass’s Theorem. In the latter
case, f has a minimum at some c ∈ (a, b). Whichever happens, the first
order necessary condition for an interior optimum in R shows f′(c) = 0
(remember your calculus!), and we are done.
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30.8 Mean Value Theorem

The Mean Value Theorem generalizes Rolle’s Theorem, which is the key
to the proving the Mean Value Theorem.2

Mean Value Theorem. Let f : I → R be a C1 function on an interval
I ⊂ R. Then for any points a, b ∈ I with a < b there is a point c,
a < c < b with

f′(c) =
f(b) − f(a)

b− a ,

or equivalently, f(b) − f(a) = f′(c)(b− a).

Mean Value Theorem Illustrated
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Figure 30.8.1: The Mean Value Theorem gives us a point c ∈ (a, b) where
the slope of the tangent T to f at

(

c, f(c)
)

is equal to the slope of the secant S
through

(

a, f(a)
)

and
(

b, f(b)
)

.

2 The modern form of the Mean Value Theorem is due to Cauchy in 1821.
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30.9 Proof of the Mean Value Theorem

Mean Value Theorem. Let f : I → R be a C1 function on an interval
I ⊂ R. Then for any points a, b ∈ I with a < b there is a point c,
a < c < b with

f′(c) =
f(b) − f(a)

b− a , or equivalently, f(b) − f(a) = f′(c)(b− a).

Proof. We just need to apply Rolle’s Theorem to the proper function.
Define the function g by

g(x) = f(x) − f(a) − f(b) − f(a)

b− a (x− a).

For every x ∈ (a, b), g(x) is the vertical distance between the secant line
S and f(x).

The distance is zero at both a and b:

g(a) = f(a) − f(a) − f(b) − f(a)

b− a (a− a) = 0

and

g(b) = f(b) − f(a) − f(b) − f(a)

b− a (b− a) = 0.

This shows the secant intersects the graph of f at both a and b.

By Rolle’s Theorem, there is a c ∈ (a, b) with

0 = g′(c) = f′(c) − f(b) − f(a)

b− a

Then f′(c)(b− a) = f(b) − f(a), proving the result.
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30.10 Mean Value Theorem on Rm

There is a version for Rm that follows directly from the basic Mean Value
Theorem.

Theorem 30.10.1. Let f : U→ R be a continuously differentiable function
defined on an open setU ⊂ Rm. Suppose a,b ∈ U with the line segment
ℓ(a,b) ⊂ U. Then there is a point c in the line segment ℓ(a,b) such that

f(b) − f(a) = Df|c(b− a)

Proof. Define g : [0, 1] → U by g(t) = a + t(b − a) and set h(t) =
f
(

g(t)
)

. Then h : [0, 1] → R. By the Mean Value Theorem, there is a
t∗ ∈ (0, 1) with

h(1) − h(0) = h′(t∗)(1 − 0) = h′(t∗).

Let c = g(t∗) = a + t∗(b− a). Then

f(b) − f(a) = h(1) − h(0)

= h′(t∗)

= Dtf
(

g(t∗)
)

= Dxf
(

g(t∗)
)

g′(t∗)

= Df|c(b− a).

This tells us that f(b) = f(a) + Df(c)(b − a) for some c on the line
segment ℓ(b,a), which is useful for approximating f at a point b based
on its value at a point a.
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30.11 Derivatives and Factorials

There is a generalization of the Mean Value Theorem using Taylor Poly-
nomials. Let f(k) denote the kth derivative of f:3

f(k)(x) =
dkf

dxk
(x)

where f(0)(a) = f(a).

Recall that k! denotes k factorial which is defined inductively for non-
negative integers by 0! = 1 and k! = k(k − 1)! for any positive integer
k. Thus

k! = 1 · 2 · 3 · · · (k− 1) · k.

The gamma function extends the factorial function to the complex
numbers, excepting the non-positive integers. They are related by
k! = Γ (k + 1) whenever k is a non-negative integer. When z ∈ C

has a positive real part,

Γ (z) =

∫∞

0

xz−1e−x dx.

3 This is an alternate way of of writing Lagrange’s notation, f′, f′′, f′′′, . . . that works
better with summation.
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30.12 Taylor Polynomials

Taylor’s formula will allow us to approximate a function f by polynomials—
the Taylor polynomials.

Taylor Polynomial. The kth order Taylor polynomial is

Pk(x;a) = f(a) + f′(a)(x− a) +
1

2!
f′′(a)(x− a)2 + · · · +

1

k!
f(k)(a)(x− a)k

=
k∑

n=0

1

n!
f(n)(a)(x− a)n.

The fact that Pk(a;a) = f(a) will be useful when we prove various
forms of Taylor’s Formula.

Here are the first several Taylor polynomials:

P0(x;a) = f(x)

P1(x;a) = f(x) + f′(a)(x− a)

P2(x;a) = f(x) + f′(a)(x− a) +
1

2
f′′(a)(x− a)2

P3(x;a) = f(x) + f′(a)(x− a) +
1

2
f′′(a)(x− a)2 +

1

6
f(3)(a)(x− a)3
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30.13 First Order Taylor’s Formula in R

To see how the proof of Taylor’s formula works, we start with the first
order Taylor’s formula. (The Mean Value Theorem is the zeroth order
Taylor’s formula.) The proof is an exercise in using Rolle’s Theorem.

Theorem 30.13.1. Let f : I → R be a C2 function defined on an interval
in R. If a, b ∈ I there exists a c ∈ (a, b) such that

f(b) = f(a) + f′(a)(b− a) +
1

2
f′′(c)(b− a)2

(30.13.1)

= P1(b;a) +
1

2
f′′(c)(b− a)2.
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30.14 Proof of First Order Taylor’s Formula in R

Proof. Define

g(x) = f(x) − P1(x;a) −M(x− a)2

= f(x) −
[

f(a) + f′(a)(x− a)
]

−M(x− a)2.
(30.14.2)

By definition, g(a) = f(a) − P1(a;a) = 0. Now choose M so that
g(b) = 0. Then

M =
1

(b− a)2
[

f(b) − f(a) − f′(a)(b− a)
]

By Rolle’s Theorem, there is a c1 ∈ (a, b) with g′(c1) = 0. Now

g′(x) = f′(x) − f′(a) − 2M(x− a)

so g′(a) = f′(a)− f′(a) = 0. Both g′(a) = g′(c1) = 0, so we apply Rolle’s
Theorem again, this time to g′ on the interval (a, c1).

From Rolle’s Theorem we obtain a c ∈ (a, c1) ⊂ (a, b) with g′′(c) = 0.
Now

g′′(x) = f′′(x) − 2M

so f′′(c) = 2M. In equation (14.43.6), substitute M = f′′(c)/2 and set
x = b to obtain equation (30.13.1).
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30.15 kth Order Taylor’s Formula in R

We now consider the kth order Taylor’s formula.

Taylor’s Formula in R. Let f : I → R be a Ck+1 function defined on an
interval I in R. If a, b ∈ I there exists a c ∈ (a, b) such that

f(b) = f(a) + f′(a)(b− a) +
1

2!
f′′(a)(b− a)2 + · · · +

1

k!
f(k)(a)(b− a)k

+
1

(k+ 1)!
f(k+1)(c)(b− a)k+1 (30.15.3)

= Pk(b;a) +
1

(k+ 1)!
f(k+1)(c)(b− a)k+1

Proof. Define

g(x) = f(x) − Pk(x;a) −M(x− a)k+1

= f(x) − f(a) − f′(a)(x− a) − 1

2!
f′′(a)(x− a)2

− · · · − 1

k!
f(k)(a)(x− a)k +M(x− a)k+1

(30.15.4)

where

M =
1

(b− a)k+1

[

f(b) − Pk(b;a)
]

Proof continues . . .
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30.16 Taylor’s Formula Proof Part II

Part II of Proof. As before, g(a) = f(a)−Pk(a;a) = f(a)− f(a) = 0 and
M has been chosen so that g(b) = f(b)−Pk(b;a)−

[

f(b)−Pk(b;a)
]

= 0.

By Rolle’s Theorem, there is a c1 ∈ (a, b) with g′(c1) = 0. Now

g′(x) = f′(x) − f′(a) − f′′(a)(x− a) − · · · − 1

(k− 1)!
f(k)(a)(x− a)k−1

+ (k+ 1)M(x− a)k.

Then g′(a) = f′(a)− f′(a) = 0. A second application of Rolle’s Theorem,
now to g′, yields a c2 ∈ (a, c1) ⊂ (a, b) with g′′(c2) = 0.

Computing g′′ we obtain

g′′(x) = f′′(x) − f′′(a) − · · · − 1

(k− 2)!
f(k)(a)(x− a)k−2

− (k+ 1)kM(x− a)k−1.

It follows that g′′(a) = f′′(a) − f′′(a) = 0. A third application of Rolle’s
Theorem, now to g′′′, yields a c3 ∈ (a, c2) ⊂ (a, b) with g′′′(c3) = 0.

Proof continues once more . . .
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30.17 Taylor’s Formula Proof Part III

Remainder of Proof. We continue applying Rolle’s Theorem to succes-
sive derivatives until we eventually get to g(k)(x) with g(k)(ck) = 0 and

g(k)(x) = f(k)(x) − f(k)(a) − (k+ 1)!M(x− a).

It follows that g(k)(a) = f(k)(a)− f(k)(a) = 0, so we apply Rolle’s Theorem
one last time to find a c ∈ (a, ck) ⊂ (a, b) with g(k+1)(ck) = 0.

We compute

g(k+1)(x) = f(k+1)(x) − (k+ 1)!M.

Then f(k+1)(c) = (k+ 1)!M, so M = f(k+1)(c)/(k+ 1)!.

In equation (30.15.4), substituteM = f(k+1)(c)/(k+ 1)! and set x = b

to obtain equation (30.15.3).
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30.18 Big O

Big O and little o are notations used to describe the asymptotic behavior
of functions. They can be applied at infinity, or at any finite point (often
0). The “O” stands for order, and indicates that one function is the
same order as the other. They are useful for describing the precision of
estimates.4

Thus f(x) = O
(

g(x)
)

as x→ ∞ means there is an M > 0 such that

|f(x)|

g(x)
≤M

for x large enough.

Similarly f(x) = O(x3) at 0 means there is an M > 0 with

|f(x)|

x3
≤M

for x near 0.

Thus

10 − 1

x
= O(1) as x→ ∞.

4 This type of asymptotic notation is known as the Bachman-Landau notation. Big O
was introduced by Paul Bachman (1837–1920) in 1894, Edmund Landau (1877–1938)
proposed the little o notation in 1909. There are other variants that are less commonly
used, such as the Ω notation of G.H. Hardy (1877–1947) and J.E. Littlewood (1885–
1977).
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30.19 Little o

Big O is used when the ratio of two functions is bounded. We use little
o when the ratio converges to zero. So f(x) = o

(

g(x)
)

at infinity means
that for every ε > 0, there is a K such that

|f(x)|

g(x)
< ε

for all x > K. The definition at any finite point is similar.

When we say R(x) = o
(

|x|k
)

at x = 0, it means that for every ε > 0,
there is a δ > 0 with

|R(x)| < ε|x|k

for |x| < δ. In this case f converges to zero enough faster than |x|k that
the ratio also converges to zero.
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30.20 Limsup and Liminf

Two useful limit concepts are the limit superior or limsup, and the limit
inferior or liminf.

Limit Superior. The limit superior or lim sup is defined by

lim sup
x→a

f(x) = lim
ε→0

(

sup{f(x) : x ∈ Bε(a)}
)

when a is finite, and

lim sup
x→∞

f(x) = lim
k→∞

(

sup{f(x) : x > k}
)

when a = +∞.

The definition is a little simpler for sequences. When we have a
sequence {an},

lim sup
n→∞

= lim
n→∞

(

sup{am : m ≥ n}
)

.

Limit Inferior. The limit inferior, lim inf, is defined analogously. E.g.,

lim inf
n→∞

an = lim
n→∞

(

inf{am : m ≥ n}
)

.



16 MATH METHODS

30.21 Limits, Big O, and little o

The definitions of big O and little o can also be stated in terms of limits.

Big O. We write f(x) = O
(

g(x)
)

as x→ a to mean

lim sup
x→a

|f(x)|

g(x)
<∞.

The case a = ±∞ is allowed.

As for little o, we use the same quotient, but here the limit superior is
0. In that case, it is enough to use the limit itself rather than the limit
superior.

Little o. We write f(x) = o
(

g(x)
)

as x→ a when

lim
x→a

|f(x)|

g(x)
= 0.

The case a = ±∞ is allowed.
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30.22 The Remainder in Taylor’s Formula

We can describe the behavior of the remainder from Taylor’s formula
using little o. Define the kth remainder term by

Rk(x;a) = f(x) − Pk(x;a).

Use Taylor’s formula to write

Rk(x;a)

(x− a)k
=

1

k!

f(k+1)(c)(x− a)k+1

(x− a)k
=

1

k!
f(k+1)(c)(x− a).

As x→ a, c→ a, so the limit of the remainder is

lim
x→a

Rk(x;a) =
1

k!
f(k+1)(a)(a− a) = 0,

or in the little o notation,

Rk(x;a) = o
(

|x− a|k
)

.

This shows that Taylor’s formula is a good approximation of f for x near
a, and the approximation is better the closer you are to a.
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30.23 Example: A Power Series

◮ Example 30.23.1: Power Series. In some cases, the approximation is
perfect as k → ∞, and we get a convergent power series. Consider
f(x) = sin x and set a = 0. Then f(2k)(0) = 0, f(4k+1)(0) = +1 and
f(4k+3)(0) = −1, so the Taylor expansion for sin x is

sin x = x− x3

3!
+
x5

5!
− x7

7!
+ · · · =

∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1.

Applying the ratio test, we find that this series converges absolutely for
any x ∈ R because

∣

∣

∣

∣

x2n+3

(2n+ 3)!

∣

∣

∣

∣

·
∣

∣

∣

∣

(2n+ 1)

x2n+1

∣

∣

∣

∣

=

∣

∣

∣

∣

x2

(2n+ 2)(2n+ 3)

∣

∣

∣

∣

→ 0

as n→ ∞ for every real x.

The remainder obeys

|R2k+1| =
|x|2k+1

k!
→ 0 as k→ ∞,

so the power series converges to sinx. The convergence is uniform on
any compact interval. As a result, the limit is continuous. In fact, the
limits of the derivatives also converge uniformly to the derivatives of sinx
on compact intervals, yielding a C∞ function. Finally, since the power
series converges, sin x is not only C∞, but also is an analytic function, as
is its complex version. ◭
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30.24 Analytic vs. C∞ Functions

Analytic (holomorphic) functions are very special. This is especially true
in complex function theory where any function that is complex differ-
entiable is also analytic, something that is not even remotely true for
functions on the real line. In fact, even C∞ functions need not be close
to being real analytic.

We demonstrate this in Example 30.25.1. It shows a C∞ function that
is zero on half of the real line. It’s power series at zero is identically
zero. In other words, the remainder term in the Taylor series is the
function, and the Taylor series contributes nothing. In contrast, with
analytic functions, the remainder will converge to zero and the power
series is everything.
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30.25 Example: Nothing but the Remainder

◮ Example 30.25.1: Infinitely Flat Function. Consider the function f : R →
R defined by

f(x) =

{
e−1/x for x > 0

0 for x ≤ 0

This is a C∞ function. All derivatives from the left at zero are zero because
the function is always 0 on (−∞, 0]. As for the function to the right,
f′(x) = (1/x2)e−1/x. This has limit zero at x = 0 because the exponential
converges to zero a lot faster than the polynomial (1/x2) explodes. In
fact, all of the derivatives from the right involve a polynomial in 1/x times
e−1/x, and the exponential always wins.

Since the derivatives are zero, each Pk(x, 0) = 0. Each Taylor approx-
imation is zero! That means the remainder when x > 0 is always f(x).
The function itself is the remainder. However, as f is very near zero when
x > 0 is small, that does not prevent Taylor’s formula from still giving us
a good approximation of the function f near 0.

Yes, it is kind of weird. ◭

f(x)

y = 1

x

y

Figure 30.25.2: This C∞ function f is infinitely flat at x = 0, meaning that
all of its derivatives are zero there. It converges to 1 as x→ +∞.
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30.26 Another Infinitely Flat Function

An interesting variation is

g(x) =






e−1/(x−b) for x ≥ b
0 for a ≤ x ≤ b.
e−1/(a−x) for x ≤ a

This C∞ function is zero exactly on the interval [a, b] and strictly positive
outside that interval. It is strictly decreasing on (−∞, a) and strictly
increasing on (b,+∞).

g(x)

y = 1

x

y

a b

Figure 30.26.1: This C∞ function f is infinitely flat at both x = a and x = b,
meaning that all of its derivatives are zero there. It is zero if and only if
x ∈ [a, b] and converges to 1 as x→ +∞.

Although you can do this sort of thing with C∞ functions, it doesn’t work
with analytic functions. This function has a power series representation
on a neighborhood of every point except a and b.
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30.27 Taylor’s Formula in Rm

Just as we did with the Mean Value Theorem, we can derive Taylor’s
Formula in Rm from the R1 version. We will use the shorthand nota-
tion

[

Dkfa
]

h⊗k to denote the k-tensor
[

Dkfa
]

(h, . . . ,h) that is the kth

derivative applied to h⊗ · · · ⊗ h ∈ (Rm)⊗k.

Taylor’s Formula in Rm. Let f : U→ R be a Ck+1 function defined on an
open set in Rm. Suppose that for every a,b ∈ U, ℓ(a,b) ⊂ U. Then for
all a,b ∈ U there exists a c ∈ ℓ(a,b) such that

f(b) = f(a) +
[

Dfa
]

(b− a) +
1

2!

[

D2fa
]

(b− a)⊗2 + · · ·

+
1

k!

[

Dkfa
]

(b− a)⊗k

+
1

(k+ 1)!

[

Dk+1f(c)
]

(b− a)⊗(k+1) (30.27.5)
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30.28 Proof of Taylor’s Formula in Rm

Proof. We will piggyback off Taylor’s Formula in R. Define

φ(t) = f
(

(1 − t)a + tb
)

= f
(

a + t(b− a)
)

.

Since U is open, φ : I→ R is a C(k) function defined on an open interval
I ⊃ [0, 1]. We can apply Taylor’s Formula on the interval I between 0
and 1 to find

φ(1) =
k∑

n=0

1

n!

[

φ(n)(0)
]

1n +
1

(k+ 1)!

[

φ(k+1)(t∗)
]

1k+1.

for some t∗ ∈ (0, 1). Then we apply the Chain Rule to find

φ′(t) =
[

Df
(

a + t(b− a)
)]

(b− a),

φ′′(t) =
[

D2f
(

a + t(b− a)
)]

(b− a)⊗2,

φ′′′(t) =
[

D3f
(

a + t(b− a)
)]

(b− a)⊗3

etc.

Setting t = 0 we obtain equation (30.27.5).
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30.29 The Remainder Term in Rm

Again, the kth remainder term is Rk(x;a) = f(x) − Pk(x;a), so

Rk(x;a) =
1

k!

[

D(k+1)fc
]

(x− a)⊗(k+1).

Dividing by ‖x− a‖k, we obtain

Rk(x;a)

‖x− a‖k =
1

k!

[

D(k+1)fc
]

(x− a)⊗(k+1)

‖x− a‖k

Let u be the unit vector (x− a)/‖x− a‖. Then

Rk(x;a)

‖x− a‖k =
1

k!

[

D(k+1)fc
]

u⊗(k+1)‖x− a‖

As x → a, c → a, and we find

Rk(x;a)

‖x− a‖k → 0

as x → a. Alternatively

Rk(x;a) = o
(

‖x− a‖k
)

as ‖x − a‖ → a. This means that the remainder goes to zero as x → a

enough faster than ‖x− a‖k → 0 that their ratio converges to zero.
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29.3 Connected Sets

10/25/22

Our next collection of important topological concepts relates to con-
nected sets. Roughly speaking, a connected set is a set that is a single
contiguous piece. Before defining connectedness, we need another def-
inition.

29.48 Relative (Subspace) Topology

We start by defining the relative or subspace topology.

Relative (Subspace) Topology. Let (X,T) be a topological space and S
a subset of X. The relative or subspace topology on S is defined by
TS = {S ∩U : U ∈ T} and (S,TS) is called a subspace of X.

The relative topology is the weakest topology where the inclusion map
iS : S→ X, defined by iS(x) = x, is continuous. In any topology where it
is continuous, the sets U∩ S = i−1(U) must be open. The relative topol-
ogy TS demands exactly that—no more, no less. The relative topology
on S makes S into a topological space (in this case a subspace).

When (X, d) is a metric space, the subspace topology is equivalent to
metric topology (S, d). That’s the point of the subspace topology. It’s the
topology a set gets by virtue of being a subset of a larger space.

Sets of the form U ∩ S with U open in X are referred to as relatively
open and sets of the form F ∩ S = i−1(F) with F closed in X are called
relatively closed.
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29.49 Embedding R in R2

An embedding of A into B is defined by a one-to-one continuous map
f : A → B which has a continuous inverse on f(A). The map is also
referred to as an embedding.1

◮ Example 29.49.1: EmbeddingR inR2. When R2 has the usual topology,
we can embed R into R2 as R = {x ∈ R2 : x2 = 0}. Here the embedding
map is f(x) = (x, 0) and R = f(R). The relative topology on R is the same
as the usual topology on R. This is illustrated in Figure 29.49.2 which
shows that the intersection of Rwith an open ball in R2 is an open interval
(and vice-versa). This means the two topologies are the same.

bc bc
R

x1

x2

Figure 29.49.2: The intersection of an open ball in R2 and the line R = {x :
x2 = 0} is an open interval in R. Had we used a closed ball, we would have
gotten a closed interval.

◭

1 Such maps are called homeomorphisms. We will learn more about them in section
34.1.
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29.50 Relative Complements

The relative complement of A in S, denoted S \A, is defined by S \A =
{x ∈ S : x /∈ A} = S ∩Ac.

It’s easy to see that the relative complement of a relatively open set is
relatively closed and vice-versa.

Theorem 29.50.1. Let S ⊂ X have the relative topology induced by (X,T).
Then A is the relative complement of an open set if and only if A = S∩ F
for some set F that is closed in X.

Proof. Let A = S \U = S ∩Uc for some open set U. Then A = S ∩ F
where F = Uc is closed.

Conversely, if A = S∩F for some closed set F, thenA = S\Fc. Setting
U = Fc we get an open set, allowing us to write and A = S \U.
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29.51 Disconnected Sets

To define a connected set, we first define disconnected sets.

Disconnected Sets. Let (X,T) be a topological space. The space X is
disconnected if there are two disjoint non-empty open sets U and V that
obey X = U ∪ V. Then (U,V) is called a disconnection of X.

Thus [0, 1) ∪ (1, 2] is disconnected. Just take U = [0, 1) and V = (1, 2]
(both of these sets are relatively open).

The definition of disconnected sets can be recast in terms of closed
sets. Theorem 29.51.1 applies regardless of whether we are using the
base topology on X, or if we are considering a subset with the relative
topology.

Theorem 29.51.1. A space X is disconnected if and only if there are non-
empty disjoint closed subsets A and B that cover X.

Proof. The set X is disconnected if and only if there are non-empty
open setsU and V withU∩V = ∅ andU∪V = X. Taking complements,
and defining the closed sets A = Uc and B = Vc, we find this holds if
and only if A ∪ B = Uc ∪ Vc = X and A ∩ B = ∅. Also there are u ∈ U
and v ∈ V, if and only if u /∈ Uc = A and v /∈ Vc = B. Since the sets
cover X, that is equivalent to A and B being non-empty.
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29.52 A Disconnected Set

Disconnected sets have two or more pieces. Here’s an example of an
obviously disconnected set.

◮ Example 29.52.1: A Disconnected Set. A set such as

S = [0, 1) ∪ (1, 2] ⊂ R

is not connected. One disconnection is A = (−1, 1) and B = (1, 3).
Both sets are open, both have non-empty intersection with S. Here
A ∩ S = [0, 1) 6= ∅ and B ∩ S = (1, 2] 6= ∅. The sets A and B cover S as

A ∪ B = (−1, 1) ∪ (1, 3)

⊃ [0, 1) ∪ (1, 2]

= S.

Finally, the sets A and B are disjoint: A ∩ B = ∅. ◭
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29.53 Characterizing Relative Disconnections I SKIPPED

Let S have the relative topology and U,V be relatively open sets that
disconnect S. What can we say about the open sets in X that generate
them?

Theorem 29.53.1. Let (X,T) be a topological space and S ⊂ X. Suppose
U and V are relatively open sets that disconnect S. Then there are open
sets U′ and V ′ in X obeying

1. U′ ∩ S and V ′ ∩ S are both non-empty.

2. S ⊂ U′ ∪ V ′.

3. U′ ∩ V ′ ∩ S = ∅.

Conversely, if U′ and V ′ are open sets obeying (1)–(3), U = U′ ∩ S and
V = V ′ ∩ S disconnect S in the relative topology.

Proof. By the definition of the relative topology, there are open sets
U′, V ′ ⊂ X with U = U′ ∩ S and V = V ′ ∩ S. (1) Now U′ ∩ S and V ′ ∩ S
are U and V, which are non-empty. (2) Because U and V are disjoint,
U′ ∩ V ′ ∩ S = ∅. (3) Finally, U and V cover S, so (U′ ∩ S) ∪ (V ′ ∩ S) = S.
This follows if S ⊂ U′ ∪ V ′.

We now prove the converse. By (1), U = U′ ∩ S and V = V ′ ∩ S are
are non-empty. By (2), U and V are disjoint. By (3), their union is all of
S. Since U and V are also relatively open, they disconnect S.

Notice that it need not be the case that U′ ∩ V ′ is empty, only that it
contain no points in S.
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29.54 Characterizing Relative Disconnections II SKIPPED

There’s a similar result for closed sets. The proof is quite similar, and
has been omitted.

Theorem 29.54.1. Let (X,T) be a topological space and S ⊂ X. Suppose
A and B are relatively closed sets that disconnect S. Then there are closed
sets A′ and B′ in X obeying

1. A′ ∩ S and B′ ∩ S are both non-empty.

2. S ⊂ A′ ∪ B′.

3. A′ ∩ B′ ∩ S = ∅.

Conversely, if A′ and B′ are closed sets obeying (1)–(3), A = A′ ∩ S and
B = B′ ∩ S disconnect S in the relative topology.
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29.55 Connected Sets

Intuitively, a set is connected if there are no breaks in the set, if it is all
one piece. That’s not how we define connected sets. We define them
negatively. Rather than using any positive attributes of the set, connected
sets are defined by what they don’t have.

A connected set is a set that is not disconnected.

Connected Sets. Let (X,T) be a topological space. The space X is con-
nected if if cannot be disconnected.

A subset S of X is connected it if is connected in the relative topology.
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29.56 Totally Disconnected Sets

How bad can disconnections get? Totally disconnected sets are the
opposite extreme from connected sets. They contain no connected
subsets bigger than a single point. A set is totally disconnected if its only
connected subsets are the trivial ones—singletons and the empty set.
Equivalently, a set is totally disconnected if you can disconnect any two
distinct points in the set.

◮ Example 29.56.1: The Rationals are Totally Disconnected. The rational
numbers Q provide an example of total disconnection. Suppose a is
an irrational number (e.g.,

√
2, π). Then A = (−∞, a] ∩ Q and B =

Q∩ [a,+∞) are relatively closed sets in Q that disconnect Q. Moreover,
you can disconnect any subset of Q that contains at least two distinct
points in the same fashion. That means that the set Q ⊂ R is totally
disconnected. ◭

SKIPPED

Another totally disconnected set is the Cantor set of section 12.40.

◮ Example 29.56.2: The Cantor Set is Totally Disconnected. Suppose
x < y are distinct elements of the Cantor set. As we saw, both can be
written as ternary numbers consisting entirely of 0’s and 2’s. Take the
first digit that differs, call it digit k. Digit k is 0 in x, 2 in y. Let z have
ternary expansion identical to x, except that the kth digit is 1. Then x < z
and y > z. Let A = C ∩ (−∞, z] and B = C ∩ [z,+∞). Then A and B
are closed sets that disconnect C. ◭
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29.57 Connected Components of Disconnected Sets

Let (X,T) be a topological space that is not connected. If a subspace S is
connected, we can ask it if is there are any larger connected subspaces
that include it. If there are not, then we call S a connected component
or just a component of X.

Given a connected subset S, a maximal connected subset containing
S can be constructed by taking the union of all connected subsets of X
that contain S. The key step in showing this is that the union of two
connected subsets containing S is also connected. In fact, we can show
more than we need. If two connected subsets share even a single point,
their union is connected.

Theorem 29.57.1. Suppose A and B are connected subsets of (X,T) that
both contain the point x. Then A ∪ B is connected.

Proof. Suppose that A ∪ B can be disconnected by relatively open
sets U and V. Label the sets U and V so x ∈ U. Keep in mind that
x ∈ A ∩ B and take y ∈ V ∩ (A ∪ B). There are two possibilities: y ∈ A
or y ∈ B.

Suppose y ∈ A. But then both A∩U and A∩V are non-empty, so U
and V disconnect A, which is impossible.

Otherwise, y ∈ B. Now x ∈ U and y ∈ V, so both B ∩ U and B ∩ V
are non-empty. Then U and V disconnect the connected set B, which
is also impossible.

As both possibilities are impossible, we cannot disconnect A ∪ B.

Earlier we considered the space [0, 1) ∪ (1, 2]. It has two connected
components, [0, 1) and (1, 2]. Both sets are connected because they are
intervals, but because they share no points in common, their union is
disconnected.
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29.58 Intervals are Connected

In contrast to examples 29.52.1 and 29.56.1, any interval in the real line
is a connected set.

Proposition 29.58.1. Any interval I in R is connected.

Proof. Let I be an interval, possibly infinite. We prove this by contra-
diction. Suppose I is not connected, then there are non-empty relatively
closed sets A and B that disconnect I. Take a ∈ A and b ∈ B. We label
the sets so that a < b and consider the interval [a, b]. Note that [a, b] ⊂ I
because I is an interval and a, b ∈ I.

Define z = sup([a, b] ∩A). The set [a, b] ∩A is non-empty as a ∈ A.
Since the set is bounded, the supremum will exist. By construction,
a ≤ z ≤ b, so z ∈ [a, b] ⊂ I.

Because A and [a, b] are relatively closed,

z ∈ cl
(

[a, b] ∩A
)

= [a, b] ∩A ⊂ A.

Of course z 6= b ∈ B because A ∩ B is empty.

Since z is the upper bound of A ∩ [a, b], any w ∈ (z, b] must be in B.
In particular, z+ 1

n
∈ B for n large enough.

Letting n → ∞ and using the fact that B is relatively closed, we find
z ∈ B. But z ∈ A so it cannot also be inB. This contradiction means that
there are no setsA and B that disconnect I. Therefore, I is connected.
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29.59 Continuity and Connectedness

The continuous image of a connected set is connected. This means
that we can make connected sets from other connected sets by applying
continuous functions to them.

Theorem 29.59.1. Suppose f : X → Y is continuous and S ⊂ X is con-
nected. Then f(S) is connected.

Proof. Suppose not. Let A, B be relatively closed sets that disconnect
f(S). Now f−1(A) and f−1(B) are relatively closed because f is continuous.
Moreover,

f−1(A) ∩ f−1(B) = f−1(A ∩ B) = ∅

and
f−1(A) ∪ f−1(B) = f−1(A ∪ B) ⊃ f−1

(

f(S)
)

= S.

Thus f−1(A) and f−1(B) disconnect S. As this is impossible, f(S) cannot
be disconnected.
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29.60 The Intermediate Value Theorem

An important consequence of Theorem 29.59.1 is the Intermediate Value
Theorem, which says that if a continuous function defined on an interval
takes two values, it also takes all values in between.2

Intermediate Value Theorem. If f : [a, b] → R is continuous, and y is a
number between f(a) and f(b), then there is at least one c ∈ [a, b] with
f(c) = y.

Proof. We may assume f(a) < f(b) without loss of generality. We
proceed by contradiction. If no such c exists, (−∞, y] and [y,+∞)
disconnect f([a, b]). This is impossible by Proposition 29.59.1, and so
such a c must exist.

2 The first proof of a form of the Intermediate Value Theorem was by Bernard Bolzano
in 1817. Cauchy proved something close to this version in 1821. Amazingly, the idea
of the theorem was already used by the Greek mathematician and philosopher Bryson
of Heraclea in the 5th century BC. Bryson may have been a student of Socrates. He
was from Heraclea Pontica, a Megaran colony on the southern Black Sea coast. The
modern Turkish city of Karadeniz Ereğli (which means Heraclea Pontica) is at the same
location. I’m not sure if the city has been continuously occupied since ancient times.



38 MATH METHODS

29.61 Market Equilibrium

The Intermediate Value Theorem can be used to show that a market
equilibrium exists for a large class of supply and demand models.

Suppose that both supply S(p) and demand D(p) are continuous func-
tions of price p and there are p0 < p1 with S(p0) − D(p0) < 0 (excess
demand at a low price) and S(p1) −D(p1) > 0 (excess supply at a high
price).

By the Intermediate Value Theorem, there is a p∗ obeying p0 < p
∗ < p1

with S(p∗) = D(p∗). In other words, a market equilibrium exists.

Here are two cases where there is no equilibrium. In neither are both
the p0 and p1 conditions satisfied.
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29.62 Path-Connected Sets

It is often easiest to show a set is connected by showing it is path-
connected, rather than attempting to use the definition of connected.

A path from a to b in S is a continuous function f : [0, 1] → S with
f(0) = a and f(1) = b. As the continuous image of a connected set, any
path f

(

[0, 1]
)

is itself connected (Theorem 29.59.1).

Path-connected. A set S is path-connected if for every a, b ∈ S there is a
path from a to b in S.

Paths include all sorts of curves as well as straight lines. Path-connected
sets are connected. It is sometimes easier to show a set is path-connected
rather than directly showing it is connected.

Proposition 29.62.1. Any path-connected set is connected.

Proof. Suppose S is path-connected and A, B are closed sets with
S ⊂ A∪B. Choose a ∈ A∩S and b ∈ B∩S and let f be a path between
them in S.

Now consider f−1(A) and f−1(B). These are closed sets in [0, 1] with
0 ∈ f−1(A) and 1 ∈ f−1(B). Moreover, f−1(A) ∪ f−1(B) = f−1(A ∪ B) ⊃
[0, 1]. Since [0, 1] is connected, there is some x ∈ f−1(A) ∩ f−1(B). It
follows that f(x) ∈ A ∩ B and that A and B cannot disconnect S. Thus S
is connected.

In some spaces the connected and path-connected sets are the same.
This happens in R, where the only connected sets are the intervals. This
includes trivial intervals such as [a, a] and infinite intervals like (0,+∞).
Intervals are always path-connected, meaning that the set of connected
subsets and the set of path-connected subsets are identical in R.
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29.63 Convex and Star-shaped Sets

A convex set is one that contains the line segment between any pair of
its points.

Convex Set. Let V be a vector space. A set S ⊂ V is convex if for every
x,y ∈ S, ℓ(x,y) = {(1 − t)x + ty : 0 ≤ t ≤ 1} ⊂ S.

A star-shaped set is a set where all points can be connected to a special
point, the star point, using a line segment.

Star-shaped Set. A set S ⊂ Rm is star-shaped if there is a point x0 ∈ S so
that for any x, ℓ(x0, x) ⊂ S. We then say S is star-shaped with respect to
x0. The point x0 is called a star point.

A
B

Cb b
D

E

Figure 29.63.1: The sets A and B are convex. The sets C and D are not
convex, as demonstrated by the red line segments that must leave the set
to connect points. The sets C and D are star-shaped with respect to the
heavy dots. The annulus E is neither convex nor star-shaped, although it is
connected.
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29.64 Convex and Star-shaped Sets are Connected

It’s easy to show that convex sets are star-shaped.

Proposition 29.64.1. Any convex set S is star-shaped and every point of it
is a star point.

Proof. Let x0 be any point in S. Since S is convex, ℓ(x0,y) ⊂ S for any
y ∈ S, showing that S is star-shaped and that any point x0 is a star point
for S.

An immediate corollary of the definitions together with Proposition
29.62.1 is that convex sets are connected.

Corollary 29.64.2. Any convex set is connected.

Proof. If S is convex and x,y ∈ S, the function f(t) = (1 − t)x + ty is
a path from x to y in S.

Star-shaped sets are also connected.

Corollary 29.64.3. Any star-shaped set is connected.

Proof. Suppose x0 ∈ S is a star point and x,y ∈ S. Since x0 is a star
point, there are paths f1 : [0, 1] → S with f(0) = x0 and f1(1) = x and f2
with f2(0) = x0 and f2(1) = y.

Define the function f(t) by

f(t) =

{
f(t) = f1(1 − 2t) for 0 ≤ t ≤ 1

2

f(t) = f2(2t− 1) for 1
2 ≤ t ≤ 1

When t = 1
2, both functions take the value x0, so I can include in both

intervals.

Now f(0) = f1(1) = x and f(1) = f2(1) = y, so f is a path that runs
between x and y by going through the star point x0 when t = 1

2. This
shows S is path-connected.
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29.65 Connected Sets Need Not Be Path-Connected

Although path-connected sets are connected, the converse is not always
true. A set can be connected without being path-connected. Although
such sets are all in one piece, parts of the set may be so far apart via
the set, that you can’t use a path to get there. After all, paths must be
compact. This happens with the topologist’s sine curve.

◮ Example 29.65.1: Topologist’s Sine Curve. Let S = {(0, y) : −1 ≤ y ≤
1} ∪ {(x, sin(1/x) : x > 0}. This is a variant of the topologist’s sine curve
of Example 13.18.1.

Figure 29.65.2: Topologist’s Sine Curve

The set S is connected but not path-connected. Suppose, by way
of contradiction, that S is path-connected. Then there is a continuous
path in S, f(t) =

(

x(t), y(t)
)

, with f(0) = (0, 0) and f(1) = (1/π, 0). The
components of f, x and y, inherit continuity from f.

By the Intermediate Value Theorem, there is a t1, 0 < t1 < 1 with
x(t1) = 2/3π. Then there is a t2, 0 < t2 < t1 with x(t2) = 2/5π.
Continuing this process we obtain a decreasing sequence {tn} with tn →

0 and x(tn) = 2/(2n + 1)π. Since tn is a decreasing sequence that is
bounded below, it converges to some t0.

By continuity, y(tn) → y(t0). But this is impossible because y(tn) = +1
when n is even and −1 when n is odd. This contradiction shows there
is no such path f. The set S cannot be path connected. ◭
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29.66 A Simple Fixed Point Theorem

A function f : X → X has a fixed point if there is an x∗ ∈ X with f(x∗) =
x∗. The Intermediate Value Theorem can be used to show that any
continuous function mapping the unit interval [0, 1] to itself has a fixed
point.

Theorem 29.66.1. Let f : [0, 1] → [0, 1] be a continuous function. Then
there is x∗ ∈ [0, 1] with f(x∗) = x∗.

Proof. If f(0) = 0 or f(1) = 1, we are done.

Otherwise, define g(x) = f(x)− x. Then g is continuous with g(0) > 0
and g(1) < 0. By the Intermediate Value Theorem, there is a x∗, 0 <
x∗ < 1, with g(x∗) = 0. But then f(x∗) = x∗ and we are done.
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29.67 Contraction Mappings

Connectedness is not the only way to prove a fixed point theorem.
Banach’s Contraction Mapping Theorem is based on completeness, not
connectedness.

This powerful theorem can be used to prove the Inverse and Implicit
Function Theorems of S&B Chapter 15. It can be used to show the exis-
tence of solutions to differential equations. It has economic applications,
including finding solutions to Bellman’s dynamic programming equation
and to recursive utility for dynamic models.

Before we can state it, we must define contractions.

Contraction. Let (X, d) be a metric space. A function f : X→ X is called
a contraction if there is an r < 1 with d

(

f(x), f(y)
)

≤ r d(x, y) for every
x, y ∈ X.

In other words, a mapping is a contraction if it the images of any two
points are uniformly closer together than the original two points.
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29.68 Contraction Mapping Theorem I

Contraction Mapping Theorem. Let f be a contraction on a complete
metric space (X, d). Then f has a unique fixed point x∗. Moreover, if
we take any x0 ∈ X and define xn = f(xn−1) for n = 1, 2, . . . . Then
xn → x∗.

Proof. First we show uniqueness. Suppose there are two fixed points
x∗ and y∗. Then

d(x∗, y∗) = d
(

f(x∗), f(y∗)
)

≤ r d(x∗, y∗).

As r < 1, this implies d(x∗, y∗) = 0, so x∗ = y∗.

Consider the sequence {xn} given in the statement of the theorem. I
claim that

d(xn+1, xn) ≤ rnd(x1, x0). (29.68.1)

We prove equation (29.68.1) by induction. When n = 1 it follows
because

d(x2, x1) = d
(

f(x1), f(x0)
)

≤ r d(x1, x0).

Also, if equation (29.68.1) is true for n,

d(xn+2, xn+1) = d
(

f(xn+1), f(xn)
)

≤ r d(xn+1, xn) ≤ rn+1d(x1, x0)

showing equation (29.68.1) is true for n + 1. By induction it must be
true for all n = 1, 2, . . . .

Proof continues . . .
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29.69 Contraction Mapping Theorem II

Remainder of Proof. Suppose m > n. Then

d(xm, xn) ≤
m−n−1∑

i=0

d(xn+i+1, xn+i)

≤
m−n−1∑

i=0

rn+id(x1, x0)

=
rn

1 − rd(x1, x0).

Since the right hand side converges to zero as n→ ∞, we conclude {xn}

is a Cauchy sequence.

By completeness of X the sequence has a limit x∗. Now f is continuous,
so

f(x∗) = f
(

lim
n
xn

)

= lim
n
f(xn)

= lim xn+1 = x∗

showing that x∗ is a fixed point of f. We established uniqueness at the
beginning, so it is the unique fixed point of f.
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34. Topological Equivalence

34.1 Homeomorphisms

Homeomorphism is a key concept in topology. It’s an isomorphism for
topological spaces. It sets up an equivalence relation between topological
spaces. A homeomorphism is a continuous map with a continuous
inverse. More precisely,

Homeomorphism. Let X and Y be topological spaces. A bijective map
ϕ : X→ Y is a homeomorphism between X and Y if both ϕ and ϕ−1 are
continuous. Where there is a homeomorphism between X and Y, we
say X and Y are homeomorphic.

Homeomorphisms are one of the fundamental concepts of topology. In
a sense, homeomorphisms are the defining concept. Homeomorphisms
preserve topological properties such as openness, closedness, connect-
edness, compactness, and a number of others I haven’t mentioned. If a
property is not preserved by some homeomorphism, it isn’t considered
a topological property.

Homeomorphisms can be composed. If f : X → Y is a homeomor-
phism and g : Y → Z is a homeomorphism, then g ◦ f : X → Z is also a
homeomorphism. Together with the fact that the identity map id(x) = x

is a homeomorphism from X to X, it shows that being homeomorphic is
an equivalence relation.

That is, being homeomorphic, is reflexive (X is homeomorphic to itself
by the identity map id), symmetric (by definition, X is homeomorphic
to Y if and only if Y is homeomorphic to X), and transitive (if X is
homeomorphic to Y and Y homeomorphic toZ, thenX is homeomorphic
to Z by composition).
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34.2 Why Homeomorphisms?

Homeomorphisms have the important property that image of an open
set is open.

Theorem 34.2.1. Suppose ϕ : X→ Y is a homeomorphism and U ⊂ X is
a open set. Then ϕ(U) is also open.

Proof. By hypothesis, ψ = ϕ−1 is continuous. Now ϕ(U) = ψ−1(U),
which is open as the continuous inverse image of an open set, U.

As a consequence, a set is open in X if and only if its image is open in
Y.

Corollary 34.2.2. Suppose ϕ : X→ Y is a homeomorphism. Then T ⊂ X
is open in X if and only if ϕ(T ) is open in Y.

Proof. The “only if” part is Theorem 34.2.1. As for the “if” part, ifϕ(T )
is open in Y, then its inverse image, T = ϕ−1

(

ϕ(T )
)

is open in X.

One consequence is that the Y-topology, the collection of open sets in
Y, is the image of the X-topology. Homeomorphisms map topologies to
topologies. That’s the key to preserving topological properties.

We consider two topological spaces to be equivalent if they are home-
omorphic.
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34.3 Two Examples of Homeomorphism

Here are two homeomorphism. It is fairly easy to verify that all are
bijective continuous mappings with continuous inverses.

◮ Example 34.3.1: Stretching and Compressing Rm. A simple example of
a homeomorphism between Rm and Rm is f(x) = 50x. This function
stretches Rm. The images of two points are always 50 times as far apart
as the points themselves.

Its inverse is a contraction, compressing distances by a factor of 50.
The inverse is defined by f−1(x) = (1/50)x. Then

∥

∥f−1(x) − f−1(y)
∥

∥

2
=

1

50

∥

∥x− y
∥

∥

2

Both f and f−1 map Rm to Rm. ◭

◮ Example 34.3.2: Graph of a Parabola. Another homeomorphism maps
R onto the parabola S = {(x, x2) : x ∈ R}, where the parabola S is
given its relative topology in R2. The map f : R → S is defined by
f(x) = (x, x2) and its inverse f−1 : S→ R is given by projection onto the
first coordinate: f−1(x, x2) = x. ◭
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34.4 A Homeomorphism between (−1, 1) and R

The real line is homeomorphic to the open interval (−1, 1).

◮ Example 34.4.1: Homeomorphism between a (−1, 1) and the Real Line.

This homeomorphism, gnomonic projection, maps the interval (−1,+1)
onto the real line. The term gnomonic refers to a sundial’s gnomon.

bc bcb (0, 1)

x

y

t1x1 = f(t1) t2 x2 = f(t2)

Figure 34.4.2: The diagram shows how the mapping f works. We start with
a point t ∈ (−1, 1), map it straight up to the semicircle of radius one centered
at (0, 1), then project the line though (0, 1) and the resulting point back to the
x-axis to obtain x = f(t). Two samples are shown, from t1 = −2/5

√
5 and

t2 = +1/
√

2.

The semicircle obeys t2 + (y − 1)2 = 1. Since we are taking the
lower part, we must use the negative square root to compute y. Thus
y = 1 −

√
1 − t2. We use the point on the semicircle to compute the

slope of the line through it and (0, 1), which is −∆y/∆t = (y − 1)/t for
t 6= 0. The line is has equation y′ = 1 + (y − 1)x/t for t 6= 0. Its
horizontal intercept is at t/(1 − y) = t/

√
1 − t2, which is the value we

are looking for. Notice that this formula works for t = 0 as well.

Summing up, the resulting function and its inverse are

f(t) =
t√

1 − t2
and f−1(x) =

x√
1 + x2

.

The function f maps (−1,+1) onto R. The inverse maps R to
(−1,+1). ◭
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34.5 Gnomonic Projection

Gnomonic projection also works if there are more dimensions. We can
use it to show that the open unit disk in R2, B(0, 1), is homeomorphic to
the lower open hemisphere in R3,1

S =
{

(x, y, z) : x2 + y2 + (z− 1)2 = 1, z < 1
}
.

Again, we take the line defined by (0, 0, 1) and any point (a, b, c) ∈ S.
Its intersection with the xy-plane has coordinates

(

a

1 − c,
b

1 − c

)

, c = 1 −
√

1 − a2 − b2.

The inverse map is

(u, v) 7→
(

u√
1 + u2 + v2

,
v√

1 + u2 + v2
, 1 − 1√

1 + u2 + v2

)

.

This generalizes to any number of dimensions. The formula is slightly
different than in Example 34.4.1 because we only followed the x-
coordinate there.

1 We use the term “disk” to emphasize that this is in R2.
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34.6 Characterizing Topological Spaces

Besides preserving the topologies, homeomorphisms preserve other
topological features such as compactness and connectedness. The latter
plays an important role in classifying topological spaces. For one, home-
omorphic topological spaces must have the same number of (connected)
components. In fact, counting the components is one of the first steps in
classifying topological spaces.

Normally this is done using algebraic topology and concepts such as ho-
motopy, homology, and cohomology. But a lot comes down to counting
the connected components and seeing how they change if you change
the space a bit.
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34.7 Unit Interval and Unit Disk are Not Homeomorphic

11/01/22

The unit interval (0, 1) ⊂ R and unit disk in R2 are not homeomorphic.
Suppose f is a homeomorphism between the open unit interval I = (0, 1)
in R and the unit disk in R2, B = B(0, 1). Then f(I) = B.

Take any a with 0 < a < 1 and consider I \ {a} = (0, a) ∪ (a, 1). The
image under f is all of B except the single point {f(a)}. In fact, the function
f is still a bicontinuous bijection between I \ {a} and B(0, 1) \ {f(a)}.

However, f
(

(0, 1) \ {a}
)

⊂ B(0, 1) is the disk with a single point
removed—a connected space. It cannot be homeomorphic to the dis-
connected space (0, a)∪(a, 1). This contradiction shows that unit interval
and unit disk are not homeomorphic.

The same basic argument shows that the unit interval is not homeo-
morphic to any open ball in any Rm for m > 1. We can do the same
thing with lines to show that open balls in R2 are not homeomorphic to
open balls in R3, etc.

0 1

f

0 .3 1

f

Figure 34.7.1: In the left panel, fmaps I = (0, 1) onto an open unit ball with
diameter 1. In the right panel, we removed a single point a = 0.3 from the
interval, which is now mapped to the disk minus a single point, f(0.3). The
sets in the right panel are not homeomorphic because we have disconnected
the interval, but its image, the disk minus a point, remains connected.
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34.8 Topological Dimension

Let’s continue that line of thought.

So far, we’ve thought of dimension solely in algebraic terms, defining
it by the size of the basis of a vector space. In that case, the number
of elements in any basis defined the dimension. As we have just seen
by considering the possibility of homeomorphisms between intervals and
disks, dimension apparently also has a topological aspect. The disk
remains connected when a single point is removed, while the interval is
disconnected by the removal.

There is an important theorem in topology due to L.E.J. Brouwer (1881–
1966) that relates topological dimension and homeomorphism. We state
it without proof.2

Invariance of Domain. Let U be an open set in Rm and f : U → Rm be
continuous and one-to-one. Then V = f(U) is open in Rm and f is a
homeomorphism between U and V.

The theorem often concludes by merely saying that f(U) is open, rather
than f is a homeomorphism. Our version follows immediately from that
one.

2 L.E.J. Brouwer (1912), Beweis der Invarianz des n-dimensionalen Gebiets, Mathe-
matische Annalen 71, 305–315; see also 72, 55–56. This can found in many textbooks.
See the reference list in the Wikipedia page for Invariance of Domain, which includes
a link to a blog post by Terrance Tao. Maurice Fréchet was also doing work on a similar
concept at about the same time, although his approach ended up being less fruitful
than Brouwer’s.

L.E.J. Brouwer (1881–1966) was a Dutch mathematican and philosopher. Brouwer
was one of the great mathematicians of the early 20th century. He worked mainly
in topology, set theory, measure theory and complex analysis. He is considered the
founder of modern topology, and is particularly known for his Fixed Point Theorem
and Invariance of Domain. He was also a proponent of mathematical intuitionism, a
constructivist philosophy that considers mathematics a construct of the human mind
rather than objective truth. In Brouwer’s case, he insisted that mathematical concepts
be based on sensory intuitions, with limited on the use of logical reasoning. In particu-
lar, he thought that the law of excluded middle cannot be “applied without reservation
even in the mathematics of infinite systems”. So much for proofs by contradiction.
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34.9 Different Rm’s are Not Homeomorphic

As a result, it’s not possible to have a homeomorphism between Rk and
Rm for k 6= m. Although we don’t show it, it’s not even possible to have
homeomorphisms between open sets in Rk and Rm unless k = m.

Proposition 34.9.1. If f : Rk → Rm is a homeomorphism, then k = m.

Proof. Suppose, by way of contradiction, that k > m. We can
regard Rm as the first m coordinates in Rk. Define f̂ by f̂(x) =
(

f1(x), . . . , fm(x), 0, . . . , 0
)

. Then f̂ : Rk → Rk. Now f̂ is one-to-one, so

f̂(Rm) must be open by Invariance of Domain. But it isn’t because the
last k−m coordinates are zero. This contradiction shows k ≤ m.

If k < m, consider its inverse and apply the above argument, which
again leads to contradiction.

It follows that k = m.

This shows that both topology and linear algebra agree that Rm is
m-dimensional. The fact that topological and geometrical (vector) di-
mension agree is evidence of a deep relationship between them.
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