Micro I Final, April 24, 2014

- 1. Consider the specific model with heterogeneous firms discussed in class.
 - *a*) What are the gains to adding firm heterogeneity to general equilibrium model; whether it's a model of international trade or just a closed economy?
 - *b*) In the trade model, what are the equilibrium conditions? Give an intuitive explanation (I'm not looking for the mathematical expressions, though you can provide them if you want).
 - c) In the trade model, how do the two countries gain from lowering trade barriers? In what ways do they *not* gain?
- 2. There are two goods. Suppose a consumer has the utility function $u(x_1, x_2) = \min\{x_1, 3x_2\}$ and consumption set $\mathfrak{X} = \mathbb{R}^2_+$. Take good 1 as numéraire and let prices be $\mathfrak{p} = (1, \mathfrak{p}) \gg 0$ and income be $\mathfrak{m} > 0$.
 - a) Find the ordinary (Marshallian) demand x(p, m).

Answer: As long as p > 0, the optimum for these Leontief preferences requires $x_1 = 3x_2$. The budget constraint becomes $(1 + p/3)x_1 = m$, so the Marshallian demand is $x_1 = 3m/(3 + p)$ and $x_2 = m/(3 + p)$. If p = 0, the same formula gives the budget constraint for x_1 , so $x_1 = m$. In that case any $x_2 \ge m/3$ is optimal.

b) Compute the indirect utility function $v(\mathbf{p}, \mathbf{m})$.

Answer: Substituting the Marshallian demand in the utility function we find v(p,m) = 3m/(3+p).

c) Find the expenditure function $e(\mathbf{p}, \mathbf{\bar{u}})$.

Answer: By duality, the expenditure function solves $v(p, e(p, \bar{u})) = \bar{u}$. Thus $3e(p, \bar{u})/(3 + p) = \bar{u}$ and $e(p, \bar{u}) = (3 + p)\bar{u}/3$.

- 3. An exchange economy has three goods and two consumers. The consumers have preferences $u^i(\mathbf{x}^i) = (.5 \alpha_i) \log x_0^i + \alpha_i \log x_1^i + .5 \log x_2^i$, where $0 < \alpha_i < .5$. Endowments are $\omega_1 = (1, 2, 1)$ and $\omega_2 = (2, 1, 1)$. Take good zero as numéraire.
 - a) Is the economy substitutive? **Answer:** Yes. Preferences are Cobb-Douglas so demands are $\mathbf{x}^{i} = \mathbf{p} \cdot \omega_{i}((.5 \alpha_{i})/p_{0}, \alpha_{i}/p_{1}, .5/p_{2})$. Aggregate demand is

$$\mathbf{x} = \left(\frac{(.5-\alpha_1)\mathbf{p}\cdot\boldsymbol{\omega}_1 + (.5-\alpha_2)\mathbf{p}\cdot\boldsymbol{\omega}_2}{\mathbf{p}_0}, \frac{\alpha_1\mathbf{p}\cdot\boldsymbol{\omega}_1 + \alpha_2\mathbf{p}\cdot\boldsymbol{\omega}_2}{\mathbf{p}_1}, \frac{\mathbf{p}\cdot(\boldsymbol{\omega}_1 + \boldsymbol{\omega}_2)}{2\mathbf{p}_2}\right).$$

Thus $\partial x_0 / \partial p_i = [(.5 - \alpha_1)\omega_{1i} + (.5 - \alpha_2)\omega_{2i}]/p_0 > 0$ for i = 1, 2, $\partial x_1 / \partial p_i = (\alpha_1\omega_{1i} + \alpha_2\omega_{2i})/p_1 > 0$ for i = 0, 2, and $\partial x_2 / \partial p_i = .5(\omega_{1i} + \omega_{2i})/p_2 > 0$ for i = 0, 1. This shows the economy is substitutive.

b) Does the economy have a unique equilibrium?

Answer: Yes. Cobb-Douglas preferences insure all prices are positive in equilibrium. Substitutive economies have a unique equilibrium (up to normalization of prices).

c) Suppose α_1 increases. How does this affect the equilibrium prices of goods 1 and 2? For which good is the effect larger?

Answer: Let good 0 be the numéraire. An increase in α_1 increases demand for good 1, while leaving demand for good 2 unchanged. Since the economy is substitutive, the prices of the both non-numéraire goods rise, with the price of good 1 rising by a larger percentage (Hicks's 2nd and 3rd Laws).

- 4. Suppose a firm is a price-taker, but must decide how much to produce before the market price p is known. The firm knows the price distribution function F(p) and cost as a function of output, C(q). We presume C is twice continuously differentiable with C' > 0 and C'' > 0. The firm chooses a production level that maximizes the expected utility of its owner.
 - a) Assume the firm is risk neutral. What condition must be satisfied in order to maximize expected utility.

Answer: If the firm is risk neutral, it maximizes expected profit. Profit is pq - C(q). Expected profit is $\pi(q) = \int [pq - C(q)] dF(p)$. The first-order condition for profit maximization is $0 = \inf[p - C'(q)] dF(p) = \int p dF(p) - C'(q)$ or Ep = C'(q). Expected price equals marginal cost. Note that C'' > 0 insures the second-order conditions are satisfied.

b) Assume the firm is risk averse. What condition must be satisfied in order to maximize expected utility.

Answer: In this case we maximize the expected utilty from profit. It is $\int u pq - C(q) dF(p)$. The first order condition is $\int u'(p)[p - C'(q)] dF(p) = 0$

c) Comment on the differences between the two cases.

Answer: The presence of u' in the first-order conditions makes a difference. In class we saw that when the producer is risk averse, they will produce a smaller quantity than the risk neutral producer.

- 5. An exchange economy has two goods and two consumers. The utility functions are $u_1(x_1, y_1) = x_1 + 2y_1$ and $u_2(x_2, y_2) = (x_2)^{1/4} (y_2)^{3/4}$. Endowments are $\omega_1 = (3, 0)$ and $\omega_2 = (0, 4)$.
 - a) Find all competitive equilibria.

Answer: Since the second consumer has Cobb-Douglas utilty, we know that both prices must be strictly positive in equilibrium. We normalize so that (1,p) is the price vector. Consumer one will be at a corner unless p = 2. Consumer two has income 4p and demands

 $x_2 = (p,3)$ Note that the market for good two will not clear if consumer one is at a corner. It follows that (1,p) = (1,2) and $x_2(1,2) = (2,3)$. To clear the market, consumer one must demand (3,4) - (2,3) = (1,1). This has value 3 and is one the budget line, all of which is optimal.

b) Find all Pareto optima.

Answer: We start by considering Pareto optima in the interior of the Edgeworth box. Consumer 1 has $MRS_1 = 1/2$. This must equal $MRS_2 = y_2/(3x_2)$. Thus $3x_2 = 2y_2$. This line intersects the boundary of the box at the $x_1 = 2$. The segment between that intersection and 1's origin also consists of Pareto optima as the area of mutual improvement is outside the box.

The set of Pareto optima is $\{(x_1, 0) : 0 \le x_1 \le 2\} \cup \{(x_1, y_1) \in \mathbb{R}^2_+ : 2y_1 = -1 + 3x_1\}.$