Micro I Final: April 27, 2023

1. Suppose an exchange economy has endowment $\boldsymbol{\omega}=(3,5)$ and there are two consumers with utility functions $u_{1}\left(\boldsymbol{x}^{1}\right)=x_{1}^{1}+\frac{4}{3}\left(x_{2}^{1}\right)^{1 / 2}$ and $u_{2}\left(\boldsymbol{x}^{2}\right)=x_{1}^{2}+\frac{1}{2}\left(x_{2}^{2}\right)^{2 / 3}$. Find all Pareto optima.
Answer: We start by finding the interior Pareto optima. The marginal utilities of good two are $\mathrm{MU}_{2}^{1}=\frac{2}{3}\left(x_{2}^{1}\right)^{-1 / 2}$ and $\mathrm{MU}_{2}^{2}=\frac{1}{3}\left(x_{2}^{2}\right)^{-1 / 3}$. This means the marginal rates of substitution are $\operatorname{MRS}_{12}^{1}=\frac{3}{2}\left(x_{2}^{1}\right)^{1 / 2}$ and $\operatorname{MRS}_{12}^{2}=3\left(x_{2}^{2}\right)^{1 / 3}$. Note that these depend only on consumption of the second good, as is typical of quasi-linear utility.

We equate the marginal rates of substitution, obtaining

$$
\begin{equation*}
\frac{3}{2}\left(x_{2}^{1}\right)^{1 / 2}=3\left(x_{2}^{2}\right)^{1 / 3} \quad \text { so } \quad x_{2}^{2}=\frac{1}{2^{6}}\left(x_{2}^{1}\right)^{3} . \tag{1}
\end{equation*}
$$

It's clear that total consumption of good 2 is increasing in consumer one's consumption of good 2 , so there is a unique x_{2}^{1} where $x_{2}^{1}+x_{2}^{2}=5$. In fact, $x_{2}^{1}=4$ and $x_{2}^{2}=1$ are the unique solution to equation (1).

If $x_{2}^{1}<4$, the marginal rate of substitution for consumer one will fall, and it will rise for consumer two. As a result of the gap between marginal rates of substitution, consumer one will not consume good two, while consumer two will not consume good one. This reverses when $x_{2}^{1}>4$.

It follows that the set of Pareto optima (illustrated in the Edgeworth box below) is the union of the sets of $\left(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}\right)$ with (a) $\boldsymbol{x}^{1}=\left(0, x_{2}^{1}\right)$ and $\boldsymbol{x}^{2}=\left(3,5-x_{2}^{1}\right)$ for $0 \leq x_{2}^{1} \leq 4$; with (b) $x^{1}=\left(x_{1}^{1}, 4\right), x^{2}=\left(3-x_{1}^{1}, 1\right)$ for $0 \leq x_{1}^{1} \leq 3$; and with (c) $x^{1}=\left(3, x_{2}^{1}\right)$ and $x^{2}=\left(0,5-x_{2}^{1}\right)$ for $4 \leq x_{2}^{1} \leq 5$.

2. Consider a two-person two-good production economy where good one is produced from good two using the production function $f\left(z_{2}\right)=3\left(z_{2}\right)^{1 / 3}$. Endowments are $\boldsymbol{\omega}^{1}=(0,2)$ and $\boldsymbol{\omega}^{2}=(0,3)$ and preferences are described by the Cobb-Douglas utility functions $\boldsymbol{u}_{\mathfrak{i}}\left(\boldsymbol{x}^{\mathfrak{i}}\right)=$ $\ln x_{1}+\ln x_{2}$.

Find all competitive equilibria.
Answer: Opps! I forgot to give you profit shares. They were intended to be $\theta^{1}=2 / 5$, $\theta^{2}=3 / 5$.

There must be positive consumption of both goods due to the logarithmic Cobb-Douglas utility, so we can take good one as numéraire and write the price vector as $\mathbf{p}=(1, p)$.

Profit is $3\left(z_{2}\right)^{1 / 3}-\mathrm{p} z_{2}$. The first order condition for profit maximization is

$$
\left(z_{2}\right)^{-2 / 3}=p \quad \text { with net supply } \quad y=\left(3 p^{-1 / 2},-p^{-3 / 2}\right)
$$

Maximized profit is $1 \cdot 3 p^{-1 / 2}+p \cdot\left(-p^{-3 / 2}\right)=2 p^{-1 / 2}$.
Aggregate income is $5 p+2 p^{-1 / 2}$, so demand is

$$
\frac{5 p+2 p^{-1 / 2}}{2}\left(1, \frac{1}{p}\right)
$$

Setting supply equal to demand for good one, we find $5 p / 2=2 p^{-1 / 2}$, so $p=(4 / 5)^{2 / 3}$. The equilibrium price vector is then $\hat{\mathbf{p}}=\left(1,(4 / 5)^{2}\right)$.

Then $z_{2}=5 / 4<\omega_{2}=5$ is feasible. Net output is $\hat{\mathbf{y}}=\left(3 z_{2}^{1 / 3},-z_{2}\right)=\left(3(5 / 4)^{1 / 3},-5 / 4\right)$ and total consumption is $\boldsymbol{\omega}+\hat{\mathbf{y}}=\left(3(5 / 4)^{1 / 3}, 15 / 4\right)=15\left((1 / 100)^{1 / 3}, 1 / 4\right)$.

Without the correct profit shares, you couldn't see that consumer one has $2 / 5$ of income, and so consumption. Consumer two has $3 / 5$ of both. Equilibrium consumption is

$$
\hat{x}^{1}=6\left(\left(\frac{1}{100}\right)^{1 / 3}, \frac{1}{4}\right) \quad \text { and } \quad \hat{x}^{2}=9\left(\left(\frac{1}{100}\right)^{1 / 3}, \frac{1}{4}\right)
$$

3. Is the utility function $u\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{1} x_{2}+x_{1} x_{2} x_{3}$ additive separable on \mathbb{R}_{++}^{3} ? Explain. Answer: No, it is not additive separable on \mathbb{R}_{++}^{3}. We compute $\mathrm{MU}_{1}=1+\mathrm{x}_{2}+\mathrm{x}_{2} \mathrm{x}_{3}$ and $\operatorname{MU}_{2}=x_{1}+x_{1} x_{3}$. Then $\operatorname{MRS}_{12}=\left(1+x_{2}+x_{2} x_{3}\right) / x_{1}\left(1+x_{3}\right)$. Since MRS_{12} depends $x 3, u$ is not additive separable. In fact, MRS_{12} depends on all three variables.

If the x_{3} dependence obvious, we can compute x_{3}-derivative to reveal it.

$$
\begin{aligned}
\frac{\partial \operatorname{MRS}_{12}}{\partial x_{3}} & =\frac{x_{2}}{x_{1}\left(1+x_{3}\right)}-\frac{1+x_{2}+x_{2} x_{3}}{x_{1}\left(1+x_{3}\right)^{2}} \\
& =\frac{x_{2}\left(1+x_{3}\right)-\left(1+x_{2}+x_{2} x_{3}\right)}{x_{1}\left(1+x_{3}\right)^{2}} \\
& =\frac{-1}{x_{1}\left(1+x_{3}\right)^{2}}<0 .
\end{aligned}
$$

Since the x_{3}-derivative is not zero, MRS $_{12}$ depends on x_{3}.
4. Let $0 \leq a<b$ and define

$$
f(x)= \begin{cases}\beta x^{3} & \text { for } a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}
$$

a) What value of β makes f a probability density function.

Answer: To be a probability density, we need

$$
1=\beta \int_{a}^{b} x^{3} d x=\left.\beta \frac{1}{4} x^{4}\right|_{a} ^{b}=\beta \frac{1}{4}\left(b^{4}-a^{4}\right)
$$

It follows that $\varphi=4 /\left(b^{4}-a^{4}\right)$.
b) Calculate the expectation of x in terms of a and b.

Answer: The expectation is

$$
\frac{4}{b^{4}-a^{4}} \int_{a}^{b} x^{4} d x=\left.\frac{4}{5\left(b^{4}-a^{4}\right)} x^{5}\right|_{a} ^{b}=\frac{4\left(b^{5}-a^{5}\right)}{5\left(b^{4}-a^{4}\right)}
$$

5. Consider a contingent goods exchange economy with two consumers, one good and two states. Endowments are $\boldsymbol{\omega}^{1}=(2,0)$ and $\boldsymbol{\omega}^{2}=(0,2)$. Consumer one has utility $\boldsymbol{u}_{1}\left(\boldsymbol{x}^{1}\right)=$ $0.6 \ln x_{1}^{1}+0.4 \ln x_{2}^{1}$ while consumer two has utility $u_{2}\left(x^{1}\right)=0.2 \ln x_{1}^{2}+0.8 \ln x_{2}^{2}$
a) Find all Arrow-Debreu equilibria.

Answer: In this Cobb-Douglas case, both goods will be demanded in equilibrium, so both prices will be strictly positive. We can pick good one as numéraire, and let $\mathrm{p}=(1, \mathrm{p})$.

Then consumer one has income 2 and consumer two has income $2 p$. Demands are

$$
x^{1}(p)=\left(1.2, \frac{0.8}{p}\right) \quad \text { and } \quad x^{2}(p)=p\left(0.4, \frac{1.6}{p}\right)
$$

so market demand is

$$
x(p)=\left(1.2+0.4 p, \frac{1.6+0.8 p}{p}\right)
$$

and supply is $\boldsymbol{\omega}=(2,2)$. Setting $1.2+0.4 p=2$, meaning $p=2$. The price vector is $\hat{\boldsymbol{p}}=(1,2)$ and the resulting allocation of goods is

$$
\hat{x}^{1}=(1.2,0.4) \quad \text { and } \quad \hat{x}^{2}=(0.8,1.6)
$$

The other Arrow-Debreu equilibria have as price vector any positive multiple of \mathbf{p}. I.e., $v p=\lambda \hat{\mathbf{p}}=\lambda(1,2)$ for $\lambda>0$. Such prices yield the same equilibrium allocations.
b) Find all Arrovian securities equilibria.

Answer: The easiest way to find this is to use the Arrovian Equivalence Theorem. Then $\hat{\mathbf{q}}=(1,2), \hat{\mathbf{p}}=(1,1), \hat{\boldsymbol{x}}^{1}=(1.2,0.4), \hat{\boldsymbol{x}}^{2}=(0.8,1.6), \hat{\boldsymbol{z}}^{1}=(-0.8,0.4)$, and $\hat{\boldsymbol{z}}^{2}=(0.8,-0.4)$.

