Homework \# I

3.I.6 Let u and v be equivalent utility functions on \mathbb{R}_{+}^{m}.
a) Suppose u and v are both homogeneous of degree one. Show that $v=\mathrm{Cu}$ for some $C>0$.
b) Suppose u and v are homogeneous of degree β and γ, respectively. Show that $u=C v^{(\beta / \gamma)}$ for some $C>0$.

Answer:

a) Method I: Let $t>0$ and $x \in \mathbb{R}_{+}^{\mathrm{L}}$ be arbitrary. Since the utility functions are equivalent, there is an increasing function φ with $v(x)=\varphi(u(x))$. We now appeal to homogeneity

$$
\begin{aligned}
\mathrm{t} \varphi(\mathrm{u}(\mathrm{x})) & =\mathrm{t} v(\mathrm{x}) \\
& =v(\mathrm{tx}) \\
& =\varphi(\mathrm{u}(\mathrm{tx})) \\
& =\varphi(\mathrm{tu}(\mathrm{x})) .
\end{aligned}
$$

This implies that φ itself is homogeneous of degree I . Since $\varphi: \mathbb{R} \rightarrow \mathbb{R}, \varphi(z)=\mathrm{C} z$ for some C. Moreover, since φ is increasing, $\mathrm{C}>0$.

Method 2: When the functions are differentiable, an alternative method is to use Euler's formula. Since the utilities are equivalent, there is an increasing function φ with $v(x)=\varphi(u(x))$. Differentiate to obtain $d v=\varphi^{\prime} d u$. Take the dot product with x and apply Euler's formula. This yields

$$
v(x)=d v \cdot x=\varphi^{\prime}(d u \cdot x)=\varphi^{\prime}(u(x)) u(x)
$$

Since u and v are homogeneous of degree one in χ, we can conclude that φ^{\prime} is homogeneous of degree zero in u. This implies φ^{\prime} is some constant $C>0$ and that $u(x)=C v(x)$.
b) To apply part (a), we first convert the functions to homogeneous of degree one function. Consider $\psi(x)=[u(x)]^{1 / \beta}$ and $\phi(x)=[v(x)]^{1 / \gamma}$. Now apply part (a) to find a constant A so that $\psi=A \phi$. Then raise it to the β power to get $u=\psi^{\beta}=A^{\beta} v^{(\beta / \gamma)}$. Set $C=A^{\beta}$ to obtain the result. There is also an alternative method as in part (a).
3.2.2 Show that $u(x, y)=(1+x)(I+y)+y^{1 / 2}$ does not have an additive separable representation on \mathbb{R}_{+}^{2}.

Answer: Suppose there is a φ so that $v=\varphi \circ u$ is additive separable. We now compute $\partial v / \partial x=(I+y) \varphi(u)$ and

$$
\begin{aligned}
\frac{\partial^{2} v}{\partial x \partial y} & =\varphi^{\prime}(u)+(1+y)\left[1+x+\frac{1}{2} y^{-1 / 2}\right] \varphi^{\prime \prime}(u) \\
& =\varphi^{\prime}(u)+\left[u-\frac{1}{2} y^{1 / 2}+\frac{1}{2} y^{-1 / 2}\right] \varphi^{\prime \prime}(u)
\end{aligned}
$$

For v to be additive separable, we must have

$$
0=\varphi^{\prime}(u)+\left[u-\frac{1}{2} y^{1 / 2}+\frac{1}{2} y^{-1 / 2}\right] \varphi^{\prime \prime}(u) .
$$

However, the presence of y indicates that φ is not solely a function of u. Thus it is impossible to find a monotonic function φ of u that yields the required condition $\left(\partial^{2} v / \partial x \partial y=0\right)$.
3.3.6 Suppose utility on \mathbb{R}_{+}^{3} is given by $u(x)=\left(x_{1}+1\right) x_{2}\left(x_{3}+5\right)$.
a) Is there a monotonic transformation that transforms u into an additive separable utility function?

Answer: Yes. Let $v=\ln u$. Then $v(x)=\ln \left(x_{1}+1\right)+\ln x_{2}+\ln \left(x_{3}+5\right)$, which is in additive separable form.

If you can't quickly guess it, one way to find the right transformation is to consider $v(x)=\phi(u(x))$. The second cross partial derivatives of v must be zero. Now $\partial v / \partial x_{1}=$ $\phi^{\prime} x_{2}\left(x_{3}+5\right)$, and so

$$
\frac{\partial^{2} v}{\partial x_{2} \partial x_{1}}=\phi^{\prime}\left(x_{3}+5\right)+\phi^{\prime \prime}\left(x_{1}+1\right) x_{2}\left(x_{3}+5\right)^{2}=0
$$

This can be written as

$$
\phi^{\prime}\left(x_{3}+5\right)+\phi^{\prime \prime} u\left(x_{3}+5\right)=0
$$

Then ϕ obeys the differential equation $\phi^{\prime}+\phi^{\prime \prime} u=0$.
To solve this differential equation, set $\psi=\phi^{\prime}$. The equation becomes $\psi+\psi^{\prime} u=0$. In other words, $d \psi / \psi=-d u / u$. Its solution is $\psi(u)=A / u$ for some constant A which may be of either sign.

Now $\phi^{\prime}=\psi=A / u$. This has general solution $\phi=B+A \ln u$ for some constants A and B. Because ϕ is increasing, $A>0$. One such function is $\phi(u)=\ln u$. We don't have to worry about the other cross partial derivatives as ϕ converts u into the additive separable form $v(x)=\ln \left(x_{1}+1\right)+\ln x_{2}+\ln \left(x_{3}+5\right)$.
b) Does u induce a preference order on each commodity subgroup of $\{1,2,3\}$?

Answer: Yes. There are six commodity subgroups to consider and we consider each of them (we ignore the empty set and whole set). (I)-(3) It induces the same preference order defined by the utility function x_{i} on $\{i\}$. (4) $\operatorname{On}\{1,2\}$, it induces the order defined by the utility function $\ln \left(x_{1}+1\right)+\ln x_{2}$. (5) On $\{1,3\}$ it induces $\ln \left(x_{1}+1\right)+\ln \left(x_{3}+5\right)$. (6) On $\{2,3\}$ it induces $\ln x_{2}+\ln \left(x_{3}+5\right)$.
3.4.4 Let $\mathfrak{u} \in \mathcal{C}^{2}$ be a utility function on \mathbb{R}_{+}^{2} with $\partial u / \partial x_{1}, \partial u / \partial x_{2}>0$. Show that u is completely separable. This implies that Corollary 3.4.7 fails when $L=2$.
Answer: Since u is increasing in each argument, it induces an order on $\{I\}$ and $\{\mathbf{2}\}$. Since the only possible partitions of $\{1,2\}$ are $\{\{1\},\{2\}\}$ and $\{I, 2\}$, it is strongly separable on $\{1,2\}$ relative to the partition of singletons. This means it is completely separable. However, as shown in Exercise 3.2.2, such functions need not be additively separable.
3.4.5 Let $u(x)=x_{1}^{2}+2 x_{1} x_{2} x_{3}+x_{2}^{2} x_{3}^{2}$. Is u separable on \mathbb{R}_{++}^{3} relative to any partition? If so, is u strongly separable relative to that partition? Does u have a quasi-linear representation?
Answer: There are 4 non-trivial partitions to consider: $\{\{1\},\{2\},\{3\}\},\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\}$, and $\{\{1\},\{2,3\}\}$.

Since u is increasing, it is separable relative to the partition $\{\{I\},\{2\},\{3\}\}$. For the rest, it will be helpful to calculate the marginal rates of substitution. They are $\operatorname{MRS}_{12}=1 / x_{3}$, $\operatorname{MRS}_{13}=I / x_{2}$ and $\operatorname{MRS}_{23}=x_{3} / x_{2}$. Since MRS_{12} depends on x_{3}, which is not in $\{I\} \cup\{2\}, u$ is not strongly separable relative to $\{\{1\},\{2\},\{3\}\}$.

The same marginal rate of substitution also tells us that u is not separable relative to $\{\{I, 2\},\{3\}\}$. It is also not separable relative to $\{\{I, 3\},\{2\}\}$ because $\operatorname{MRS}_{13}=I / x_{2}$. The lack of separability in the last two cases implies there are no quasi-linear representations relative to x_{2} or x_{3}

That leaves $\{\{I\},\{2,3\}\}$, which passes the marginal rate of substitution test. In fact, $u(x)=$ $\left(x_{1}+x_{2} x_{3}\right)^{2}$, and is equivalent to $v(x)=\sqrt{u(x)}=x_{1}+x_{2} x_{3}$. Regardless of the value of x_{1}, the ranking of $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(x_{1}, y_{2}, y_{3}\right)$ only depends on whether $x_{2} x_{3}$ is bigger than $y_{2} y_{3}$. These preferences are both separable and strongly separable relative to $\{\{1\},\{2,3\}\}$. Moreover, we have quasi-linear representation relative to $x_{1}, v(x)=x_{1}+x_{2} x_{3}$.

