## Homework \#3

Problems I0.3.2, 6.I.2, 6.2.2, I3.4.2, and I3.5.2 are due on Thursday, February 23
10.3.2 Suppose utility on $\mathbb{R}_{+}^{m}$ is defined by $u(x)=\left(\min \left\{x_{i} / \alpha_{i}\right\}\right)^{\gamma}$ where $\gamma>0$ and each $\alpha_{i}>0$. Compute the Konüs true cost-of-living index for utility level $\bar{u}>0$ and $p^{0}, p^{\prime}>0$.
Answer: Expenditure is minimized by consuming the minimum required to attain utility $\bar{u}$, so $x_{i}=\bar{u}^{1 / \gamma} \alpha_{i}$. It follows that $e(p, \bar{u})=\bar{u}^{1 / \gamma}(p \cdot \alpha)$.

The true cost-of-living index is then

$$
\frac{e\left(\mathbf{p}^{1}, \bar{u}\right)}{e\left(\mathbf{p}^{0}, \bar{u}\right)}=\frac{\bar{u}^{1 / \gamma}\left(\mathbf{p}^{1} \cdot \boldsymbol{\alpha}\right)}{\bar{u}^{1 / \gamma}\left(\mathbf{p}^{0} \cdot \boldsymbol{\alpha}\right)} .=\frac{\mathbf{p}^{1} \cdot \boldsymbol{\alpha}}{\mathbf{p}^{0} \cdot \boldsymbol{\alpha}} .
$$

6.I.2 Suppose $f(z)=\left(I+e^{5}\right) /\left(I+e^{-(z-5)}\right)-I$. Maximize profit.

Answer: We compute

$$
f^{\prime}(z)=\frac{e^{-(z-5)}\left(1+e^{5}\right)}{\left(1+e^{-(z-5)}\right)^{2}}=\frac{1+e^{5}}{\left(e^{(z-5) / 2}+e^{-(z-5) / 2}\right)^{2}}>0
$$

The first order conditions for profit maximization are $f^{\prime}(z)=w / p$. It's clear that $f^{\prime}$ is bounded above. In fact, it is less than $\left(I+e^{5}\right)$. If $w / p$ is too large, profit cannot be maximized. So how big can $\mathrm{f}^{\prime}$ be?

Profit is $\operatorname{pf}(z)-w z$, and its second derivative is $p f^{\prime \prime}$. We compute $f^{\prime \prime}$.

$$
f^{\prime \prime}(z)=\frac{-2\left(1+e^{5}\right)}{\left(e^{(z-5) / 2}+e^{-(z-5) / 2}\right)^{3}}\left[\frac{1}{2} e^{(z-5) / 2}-\frac{1}{2} e^{-(z-5) / 2}\right] .
$$

Now $\mathrm{f}^{\prime \prime}>0$ when $z<5$ and $\mathrm{f}^{\prime \prime}<0$ when $z>5$. The profit curve is $S$-shaped with an inflection point at $z=5$. That inflection point has negative profit. Maximum profit (if it exists) must lie to the right of the inflection point ( with $\mathrm{f}^{\prime \prime}<0$ ).

We return to the first order conditions. Profit is $\operatorname{pf}(z)-w z$. The first-order condition is $\mathrm{pf}^{\prime}(z)=w$. The second derivative of profit will only be satisfied if $z>5$ (if $z<5$ we have a local minimum of profit).

Now

$$
p \frac{1+e^{5}}{\left(e^{(z-5) / 2}+e^{-(z-5) / 2}\right)^{2}}=w .
$$

so

$$
\frac{p\left(1+e^{5}\right)}{4 w}=\left(\frac{1}{2} e^{(z-5) / 2}+\frac{1}{2} e^{-(z-5) / 2}\right)^{2}=\cosh ^{2}\left(\frac{z-5}{2}\right)
$$

where cosh is the hyperbolic cosine. It follows that

$$
z^{*}=5+2 \cosh ^{-1}\left(\frac{p\left(1+e^{5}\right)}{4 w}\right)^{-1 / 2}
$$

This only has a solution when $p\left(1+e^{5}\right) \geq 4 w$ because cosh $\geq I$. Moreover, because $\cosh (x)=\cosh (-x)$, there are two inverse hyperbolic cosines, one positive and one negative. We need the positive one since $z^{*} \geq 5$ by the second-order condition. It has formula $\cosh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right)$, so

$$
z^{*}=5+2 \ln \left(x+\sqrt{x^{2}-1}\right)
$$

where $x=\frac{p\left(1+e^{5}\right)}{4 w}$.
6.2.2 Consider a firm facing a capacity constraint $\bar{Q}$ with production function $f(z)=a z, a>0$. We can incorporate the capacity constraint into the production function by writing

$$
f(z)= \begin{cases}a z & \text { when } 0 \leq z \leq \bar{Q} / a \\ \bar{Q} & \text { when } \bar{Q} / a \leq z\end{cases}
$$

Find the cost function $\mathrm{c}(w, q)$ and conditional factor demand $z(w, q)$.
Answer: When $\mathrm{q} \leq \overline{\mathrm{Q}}, \mathrm{f}(z) \geq \mathrm{q}$ whenever $z \geq \mathrm{q} / \mathrm{a}$. It follows that the minimum cost occurs when $z^{*}=\mathrm{q} / \mathrm{a}$. Then $\mathrm{c}(w, \mathrm{q})=w z^{*}=w \mathrm{q} / \mathrm{a}$. When $\mathrm{q}>\overline{\mathrm{Q}}$, there are no $z$ with $\mathrm{f}(z) \geq \overline{\mathrm{Q}}$, so $c(w, q)=+\infty$.

Thus

$$
c(w, q)= \begin{cases}w \mathrm{q} / \mathrm{a} & \text { when } 0 \leq \mathrm{q} \leq \overline{\mathrm{Q}} \\ +\infty & \text { when } \mathrm{q}>\overline{\mathrm{Q}}\end{cases}
$$

and

$$
z(w, \mathrm{q})= \begin{cases}\mathrm{q} / \mathrm{a} & \text { when } 0 \leq \mathrm{q} \leq \overline{\mathrm{Q}} \\ \emptyset & \text { when } \mathrm{q}>\overline{\mathrm{Q}}\end{cases}
$$

13.4.2 Suppose there are two inputs and one output with the linear production function $f\left(z_{1}, z_{2}\right)=$ $2 z_{1}+z_{2}$. The output price is $p>0$ and the input prices are $w_{\ell}>0$.
a) Find all profit-maximizing net output vectors.
b) Calculate the profit function.
c) Show directly that the Law of Supply holds.

## Answer:

a) Because this is a linear technology (CRS), maximum profit is either zero or infinite. To maximize profits, output must be $q=2 z_{1}+z_{2}$ with profit

$$
p\left(2 z_{1}+z_{2}\right)-w_{1} z_{1}-w_{2} z_{2} .
$$

Profit will be infinite if either $2 p>w_{1}$ or $p>w_{2}$. We can also see that if both $2 p<w_{1}$ and $p<w_{2}$, only 0 maximizes profit.

Finally, if $2 p=w_{1}$ and $p<w_{2}$, any amount of input $I$ is optimal while if $p=w_{2}$ and $p<w_{1} / 2$, any amount of input 2 is optimal. If both $2 p=w_{1}$ and $p=w_{2}$, then any $\left(-z_{1},-z_{2}, 2 z_{1}+z_{2}\right)$ with $z \in \mathbb{R}_{+}^{2}$ is a net output.
b) Based on the answer to (a), the profit function is

$$
\pi(p)= \begin{cases}+\infty & \text { if } 2 p>w_{1} \text { or } p>w_{2} \\ 0 & \text { if } 2 p \leq w_{1} \text { and } p \leq w_{2}\end{cases}
$$

c) Profit maximization is only possible when $2 p \leq w_{1}$ and $p \leq w_{2}$. In that case, we write

$$
\begin{aligned}
\Delta \mathrm{p} \cdot \Delta \mathrm{y}=[ & {\left[2\left(p^{\prime}-p\right)-w_{1}^{\prime}+w_{1}\right]\left(z_{1}^{\prime}-z_{1}\right) } \\
& +\left[p^{\prime}-p-w_{2}^{\prime}+w_{2}\right]\left(z_{2}^{\prime}-z_{2}\right)
\end{aligned}
$$

Notice that the $w_{1}$ and $w_{2}$ terms act independently. We will consider the $w_{1}$ terms, but similar arguments apply to the $w_{2}$ terms.

There are 4 cases for the $w_{1}$ terms. (I) If $2 p^{\prime}=w_{1}^{\prime}$ and $2 p=w_{1}$, the term is zero. (2) If $2 p^{\prime}=w_{1}^{\prime}$ and $2 p<w_{1}, z_{1}=0$, so we have $\left(-2 p+w_{1}\right) z_{1}^{\prime} \geq 0$. (3) If $2 p^{\prime}<w_{1}^{\prime}$ and $2 p=w_{1}, z_{1}^{\prime}=0$ and we have $\left(2 p^{\prime}-w_{1}^{\prime}\right)\left(-z_{1}\right) \geq 0$. (4) If $2 p^{\prime}<w_{1}^{\prime}$ and $2 p<w_{1}$, then $z_{1}^{\prime}=z_{1}=0$ and the term is zero.
13.5.2 Suppose production is described a linear activity model with basic activities $a^{1}=(3,2, I,-I)^{\top}$, $a^{2}=(2,2, I,-I)^{\top}, a^{3}=(4,0,-I,-I)^{\top}$ and $(0,4,-I,-I)^{\top}$. Find all efficient net output vectors.
Answer: The first thing to note is that while $a^{1}$ and $a^{2}$ both use the same input, $a^{1}$ produces more output. This means that the use of $a^{2}$ is never efficient. None of the other activity vectors dominate one another.

We must consider non-negative linear combinations of the form $z_{1} \mathbf{a}^{1}+z_{3} \mathbf{a}^{3}+z_{4} \mathbf{a}^{4}=$ $\left(3 z_{1}+4 z_{3}, 2 z_{1}+4 z_{4}, z_{1}-z_{3}-z_{4},-z_{1}-z_{3}-z_{4}\right)$. In fact, increasing any one of the $z_{\mathrm{i}}$ will decrease some component of the vector, so all choices with $z_{2}=0$ and $z_{i} \geq 0$ for $i \neq 2$ are efficient.

