Homework #7

Problems 25.2.6, 25.2.7, 25.5.2, 27.2.2, and 27.3.2 are due on Thursday, April 20.

- 25.2.6 Suppose a consumer discounts at rate $\rho > 0$, so the discount factor is $\delta = (1 + \rho)^{-1}$. There is one good and its price at time t is $p_t = (1 + r)^{-t}$ where r > 0 is the interest rate. The consumer has felicity function $u(c_t) = c_t^{1-\sigma}/(1 \sigma)$ where $\sigma > 0$ and $\sigma \neq 1$. The consumer has wealth W.
 - a) How fast does an optimal consumption path grow?
 - b) Let $\beta = 1 + g$ be the growth factor with g the growth rate. How must g and r be related in order for the sum $\sum_{t} p_t c_t$ to converge.
 - *c*) Are there cases where $\rho < 0$ makes sense?

Answer:

a) The first order conditions are

$$\frac{p_{t+1}}{p_t} = \delta \frac{u'(c_{t+1})}{u'(c_t)}.$$

Using $\delta = (1 + \rho)^{-1}$, $u'(c) = c^{-\sigma}$, and $p_t = (1 + r)^{-t}$, we obtain

$$\frac{c_{t+1}}{c_t} = \left(\frac{1+r}{1+\rho}\right)^{1/\sigma}$$

Consumption grows (or shrinks) by the factor $\beta = ((1 + r)/(1 + \rho))^{1/\sigma}$ Since $\sigma > 0$, consumption grows when $r > \rho$ and shrinks when $r < \rho$.

- b) Here $p_t c_t = c_0 \beta^t (1+r)^{-t}$. The sum $\sum_t p_t c_t$ converges if and only if $1+g = \beta < 1+r$, that is, if g < r.
- c) The condition $\beta < 1 + r$ means $(1 + r)^{1-\sigma} < 1 + \rho$. Negative values of ρ will obey this for certain values of r and σ . E.g., if $\sigma = 2$ and r = 0.1, we find any $\rho > 1/1.1 1 \approx -0.091$ works, such as $\rho = -0.05$.
- 25.2.7 Suppose a consumer has discount factor $0 < \delta < 1$ and period utility function $u(c) = (1 + c)^{1/2}$. The consumer has wealth W > 0 and faces prices $p_t = p > 0$ for all times t.
 - a) Use the Kuhn-Tucker Theorem to show that if $c_t = 0$ on the optimal path, then $c_{t+1} = 0$.
 - b) Show that there is a T with $c_t = 0$ for t > T.

Answer:

a) Because the problem concerns the constraints $c_t \ge 0$, the relevant Lagrangian is

$$\mathcal{L} = \sum \delta^{t} (1 + c_{t})^{1/2} - \lambda \left(\sum_{t} pc_{t} - W \right) + \sum_{t} \mu_{t} c_{t}$$

and the first order conditions are

$$\left(\frac{1}{2}\right)\delta^{\mathrm{t}}(1+c_{\mathrm{t}})^{-1/2}+\mu_{\mathrm{t}}=\lambda p.$$

If $c_t = 0$, we have $\frac{1}{2}\delta^t = \lambda p - \mu_t \le \lambda p$, while if $c_t > 0$, $\mu_t = 0$ by complementary slackness. Then $\frac{1}{2}\delta^t = \lambda p(1 + c_t)^{1/2} > \lambda p$. It follows that if $c_t = 0$, then $\frac{1}{2}\delta^{t+1} < \frac{1}{2}\delta^t \le \lambda p$, implying that $c_{t+1} = 0$ also.

- b) If $c_t > 0$ for all t, then $\mu_t = 0$ by complementary slackness. Then $\delta^t = 2\lambda p \sqrt{1 + c_t} \ge 2\lambda p$ for all t. Letting $t \to +\infty$, we find $\lambda = 0$. This contradicts the first order conditions, which require $\lambda > 0$. There must be a T with $c_T = 0$. Then by part (a), $c_t = 0$ for all t > T.
- 25.5.2 Consider the following Ramsey problem. A consumer has utility $U(c) = \sum_{t=0}^{\infty} \delta^t u(c_t)$ where $0 < \delta < 1$ and the felicity function is $u(c) = c^{1/2}$. The production function is $f(a) = \beta a$ where $\beta > 1$. The initial endowment is b > 0. Consider an optimal path with $c_t > 0$ for every t (in fact, all optimal paths obey this).
 - a) Use the Euler equations to find c_t in terms of initial consumption c_0 .
 - b) Does consumption grow over time? If so, what is the growth factor?
 - c) What are the corresponding time-zero prices p_t ? The interest rate at time t is given by $1 + r_t = p_t/p_{t+1}$. Calculate r_t .

Answer:

a) The Euler equations are

$$\delta f'(a_t) u'(c_{t+1}) = u'(c_t)$$

yielding

$$\delta \beta c_{t+1}^{-1/2} = c_t^{-1/2}.$$

It follows that $c_{t+1} = (\delta\beta)^2 c_t$. Then $c_t = (\delta\beta)^{2t} c_0$ by induction.

- b) Consumption grows by the growth factor $(\delta\beta)^2$ when $\delta\beta > 1$, is constant if $\delta\beta = 1$, and shrinks if $\delta\beta < 1$, all of which are possible with $\delta < 1$ and $\beta > 1$.
- c) The time-zero prices are given by $p_t = \partial U/\partial c_t = \delta^t u'(c_t) = \delta^t/2c_t^{1/2}$. Substituting $c_t = (\delta\beta)^{2t}c_0$, we obtain $p_t = 1/2\beta^t c_0^{1/2}$.

The equilibrium interest rate at time t is $r_t = p_t/p_{t+1} - 1 = \beta - 1 > 0$.

- 27.2.2 Consider a contingent goods exchange economy with two consumers, one good and two states. Endowments are $\omega^1 = (2, 0)$ and $\omega^2 = (0, 2)$. Both consumers have identical utility function $u(\mathbf{x}) = \pi \ln x_1 + (1 \pi) \ln x_2$ where $0 < \pi < 1$ is the probability of state one.
 - *a*) Find all Arrow-Debreu equilibria.
 - b) How does the equilibrium price of good two relative to good one relate to the probability π ?

Answer:

a) Let $p \gg 0$ be the price vector. Note that zero price is not allowed in equilibrium due to the Cobb-Douglas preferences. Since preferences are Cobb-Douglas and identical for both consumers, so demand is

$$\mathbf{x}^{i} = \mathrm{m}^{i}\left(\frac{\pi}{\mathrm{p}_{1}}, \frac{1-\pi}{\mathrm{p}_{2}}\right)$$

where $m^i = \mathbf{p} \cdot \boldsymbol{\omega}^i$ is the income of consumer i. It follows that market demand is $m(\pi/p_1, (1 - \pi)/p_2)$ where $m = m^1 + m^2$.

Market supply is $\omega^1 + \omega^2 = (2, 2)$. Setting demand equal to supply we find $\pi m/p_1 = (1 - \pi)m/p_2 = 2$. Using good one as numéraire, $m = 2/\pi$, the equilibrium prices are $\mathbf{p} = (1, (1 - \pi)/\pi)$. Individual incomes are $m^1 = 2$ and $m^2 = 2(1 - \pi)/\pi$ and the corresponding allocation is $\mathbf{x}^1 = (2\pi, 2\pi)$ and $\mathbf{x}^2 = (2(1 - \pi), 2(1 - \pi))$.

Any positive scalar multiple of p is also an equilibrium price vector with the same allocation.

- b) From part (a), the relative price of good two is $p_2/p_1 = (1 \pi)/\pi$.
- 27.3.2 Consider a contingent goods exchange economy with one good and two states. Endowments are $\omega^1 = (2, 0)$ and $\omega^2 = (0, 5)$. Both consumers have utility $u(\mathbf{x}) = \ln x_1 + \ln x_2$.
 - *a*) Find the Arrow-Debreu equilibrium.
 - b) Are the consumers fully insured?

Answer:

a) With Cobb-Douglas utility, both prices must be strictly positive. We take good one as numéraire and set $\mathbf{p} = (1, p)$. Then demand is

$$\mathbf{x}^1 = (1, 1/p)$$
 and $\mathbf{x}^2 = \frac{5p}{2}(1, 1/p)$.

Setting supply equal to demand for good one we obtain 1 + 5p/2 = 2, so p = 2/5. Equilibrium prices are $\mathbf{p} = (1, 2/5)$. Then $\mathbf{x}^1 = (1, 5/2)$ and $\mathbf{x}^2 = (1, 5/2)$.

b) Here there is aggregate uncertainty and full insurance for both consumers is not possible. In fact, neither consumers is fully insured since $x_1^i \neq x_2^i$.