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Economic models based on consumers often make a number of as-
sumptions about consumer preferences. Chapter 2 examined many
of such properties—including continuity, smoothness, convexity, and
monotonicity. All these properties are routinely assumed of utility repre-
sentations, usually without seriously compromising generality.

This chapter considers two properties that are more substantive, that
have economic consequences. It is sometimes appropriate to use them
in your models, and sometimes not. The two properties we focus on are
homotheticity and separability.
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3.0.1 More about Chapter Three

This chapter focuses on how restrictions on utility translate into restric-
tions on preferences, and vice-versa. Section one covers homothetic
preferences, preferences that are independent of the scale of consump-
tion. Homothetic preferences can generally be represented by homoge-
neous functions. Accordingly, we also study some of the more important
properties of homogeneous functions. Much of this material was covered
in the fall Math Methods course (ECO 7405).

Before section one is quite done, we take time to learn some math
connected with Stokes’ Theorem. We then do the rest of section one,
proving a converse to Proposition 3.1.5, which uses Stokes’ Theorem.

The third section (numbered 3.2) takes up the widely used additive
separable utility, and characterizes utility functions that are ordinally
equivalent to additive separable utility. The fourth section introduces
the concept of induced preferences orders on commodity groups, where
preferences over commodity bundles in one group are independent of
consumption of goods from other commodity groups. Section five (num-
bered 3.4) shows how notions of separability may be applied directly to
preference orderings, and relates it to the existence of an additive utility
representation. Finally, the last section looks at the representation of
preferences that are both homothetic and separable.
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3.1 Homothetic Preferences REVIEW

Homothetic preferences are invariant under scalar multiplication,
meaning that the preference map is unchanged when all consumption
bundles are multiplied by the same number. More precisely, preferences
are invariant under homothetic transformations centered on the origin.

When preferences are described by a smooth utility function, we can
also describe homotheticity by saying that the marginal rate of substitution
is the same anywhere on a given ray through the origin. This means
that the shape of the indifference curves are preserved under scalar
multiplication. All slopes remain unchanged.

Homothetic preferences include commonly used functional forms such
as Cobb-Douglas utility and constant elasticity of substitution utility.

One special type of homothetic utility is homogeneous utility, where
multiplying the consumption bundle by a scalar multiplies utility by some
power of that scalar. The Homothetic Representation Theorem shows
that monotonic continuous and homothetic preferences can be repre-
sented by a homogeneous utility function.

Homotheticity in economics is based on comparing positive scalar mul-
tiples of vectors. By restricting our attention to consumption sets that are
cones, we ensure that such scalar multiplication is always possible. Such
scaling preserves the shapes of objects, including indifference surfaces.
It only changes their scale.1

1 This scaling is isotropic, the same in all directions. It is also possible to consider
the effects of anisotropic scaling. This has not seen much use in utility theory, but is
sometimes useful when homogeneous production is involved. See Boyd (1990a) for
some applications.
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3.1.1 Cones REVIEW

To define homotheticity, we focus on cones, sets where positive scalar
multiplication is always possible.

Cone. A set A is a cone if for every x ∈ A and t > 0, tx ∈ A. Equiva-
lently, A is a cone if tA ⊂ A for every t > 0.

Cones are the natural setting for defining homotheticity. Examples
of cones include the positive orthant R

m
+ , the strictly positive orthant

R
m
++, any vector subspace of Rm, any ray in R

m and any set of non-
negative linear combinations of a collection of vectors {x1, . . . , xi}. The
set {(x, y) : x, y ≥ 0, y ≤ x} is an example of the last as it can also be
written {x = t1(1, 0) + t2(1, 1) : t1, t2 ≥ 0}.

Cones can also be spiky. The set

{
x ∈ R

2 : x = t(1, 2) or x = t(1, 1) or x = t(3, 1) for t ≥ 0
}

is also a cone, even though it consists of three unrelated rays from the
origin, as in Figure 3.1.1.

x1

x2

Figure 3.1.1: A spiky cone, made up by the union of three rays through the
origin.
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3.1.2 Homothetic Preferences

We are now ready to define homothetic preferences.

Homothetic Preferences and Functions. Preferences defined on a cone X

are homothetic if for every t > 0, x % y if and only if tx % ty.
Similarly, we say a function f defined on a cone is homothetic if for

every t > 0, f(x) ≥ f(y) if and only if f(tx) ≥ f(ty).

As you may already know, homothetic preferences yield Marshallian
demands that are proportional to income. In case you don’t know, we
show it in Theorem 3.1.2.

Theorem 3.1.2. Let prices and income be strictly positive, p ≫ 0 and
m > 0. Suppose x(p,m) is the set of points that maximize homothetic
preferences % over the budget set B(p,m) = {x ∈ R

m
+ : p·x ≤ m}. Then

x(p,m) = mx(p, 1)

Proof. Suppose x∗ ∈ B(p,m) with x∗ % x for all x ∈ B(p,m). Now
x∗/m ∈ B(p, 1). By homotheticity, x∗/m % x/m for all x ∈ B(p,m).
But x/m ∈ B(p, 1) if and only if x ∈ B(p,m), so x∗/m % x′ for all
x′ ∈ B(p, 1). It follows that x∗/m ∈ x(p, 1) if and only if x∗ ∈ x(p,m). In
other words, x(p,m) = mx(p, 1). �
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3.1.3 Homogeneous Functions REVIEW

Homogeneous functions are one type of homothetic function.

Homogeneous Function. Let A be a cone in R
m, a real-valued function

is homogeneous of degree γ if

f(tx) = tγf(x)

for every x ∈ A and t > 0.

The degree of homogeneity, γ, can be either positive or negative,
and need not be an integer. Restricting the domain of a homogeneous
function so that it is not all of Rm allows us to expand the notation of
homogeneous functions to negative degrees by avoiding division by zero.

The function 1/‖x‖2 is homogeneous of degree −1 on the cone R
m
++,

the strictly positive orthant, but not defined on all of Rm+ . Restricting the
domain also allows us to consider f(x)/g(x) where f is homogeneous of
degree γ1 > 0 and g is homogeneous of degree γ2 > 0, both on R

m
++.

The quotient is homogeneous of degree γ1 − γ2 on R
m
++.

When dealing with production rather than consumption, the degree
of homogeneity determines returns to scale. Constant returns to scale
functions are homogeneous of degree one. If γ > 1, homogeneous
functions of degree γ have increasing returns to scale, and if 0 < γ < 1,
homogeneous functions of degree γ have decreasing returns to scale.
Returns to scale will be considered further when we study production.
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3.1.4 Examples of Homogeneous Functions REVIEW

Functions such as f(x1, x2) = x2
1 + x2

2 and f(x1, x2) = x1x2 are homo-
geneous of degree 2.

Many commonly used utility functions are homogeneous. The Cobb-
Douglas utility functions

u(x) = A

m∏

i=1

x
γi
i

with γi > 0 are homogeneous of degree
∑

i γi on R
m
+ . The constant

elasticity of substitution utility

u(x) = [δx−ρ1 + (1 − δ)x−ρ2 ]ν/ρ

for ν > 0 and ρ > −1, ρ 6= 0 is homogeneous of degree ν. The Leontief
utility

u(x) = min
i
{xi}

is homogeneous of degree 1 on R
m
+ . In contrast, the quasi-linear utility

u(x) = x1 + x
1/2
2

is not homogeneous of any degree on R
2
+.



8 MICROECONOMICS OF COMPETITIVE MARKETS

3.1.5 Homothetic Preferences: Representation REVIEW

Any homogeneous utility function yields homothetic preferences. And
since homotheticity is an ordinal property, any increasing transformation
of a homogeneous utility function also defines a homothetic preference
order. However, not all homothetic preferences have a homogeneous
utility representation. Lexicographic preferences are homothetic, but
cannot be represented by any utility function—homogeneous or other-
wise. If we require that preferences are also monotonic and continuous,
we can represent homothetic preferences by a homogeneous utility func-
tion.

Homothetic Representation Theorem. Suppose % is monotonic, homo-
thetic, and continuous on R

m
+ . Then % has a utility representation φ that

is homogeneous of degree 1. Moreover, any utility representation of %
is then an increasing function F of φ, so utility u = F ◦ φ where F is
increasing and φ is homogeneous of degree one.
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3.1.6 Marginal Rates of Substitution and Homotheticity I REVIEW

One interesting property of homothetic functions is that marginal rate
of substitutions are constant along rays through the origin.

Theorem 3.1.2. Suppose f : Rm++ → R is homothetic and differentiable.
If MRSij(x) exists, then MRSij(x) = MRSij(tx) for all t > 0 and x ∈ R

m
++.

The requirement that the marginal rate of substitution exists rules out
cases where we are dividing by zero.

The fact that marginal rates of substitution are constant along rays
through the origin has consequences for the shape of indifference curves.
That is, they are homogeneous of degree zero. We illustrate this in Figure
3.1.3.

x

y

Figure 3.1.3: Here are three indifference curves for the Cobb-Douglas utility
function u(x, y) =

√
xy. I’ve also draw two rays from the origin. Notice how

the slope of the indifference curves remains the same along each ray. The red
tangent lines all have slope −2, while the blue tangents have slope −0.5.

Consequences of this include that facts that income expansion paths
and scale expansion paths are rays through the origin whenever the
original production or utility function is homogeneous.
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3.1.7 Marginal Rates of Substitution and Homotheticity II REVIEW

There is a converse to Theorem 3.1.2, which we will state, but not
prove.

Theorem 3.1.4. Suppose f : R
m
++ → R is C2, Df ≫ 0, and MRSij is

homogeneous of degree zero in x for every i and j. Then f is homothetic.

Proof. A proof may be found in Lau.2

Lau uses the slightly weaker assumption that there is some j with
∂f/∂xj 6= 0, in which case the MRS condition must be restated to work
around the fact that MRSij may not be defined for all pairs i and j. Lau
does not do this, but the replacement for the MRS condition is that for
all i and j, there are homogeneous of degree zero functions gij such that
∂f/∂xi = gij×(∂f/∂xj). WhenDf≫ 0, this is equivalent to the marginal
rates of substitution being homogeneous of degree zero in x. �

2 Lemma 1 in Lawrence J. Lau (1969) Duality and the structure of utility functions
J. Econ. Theory, 1, 374–396.
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3.1.8 Homogeneous Functions: Euler’s Theorem REVIEW

When functions are not merely homothetic, but homogeneous, they
have some important additional properties. The first one is given by
Euler’s Theorem, which relates homogeneous functions and their deriva-
tives.

Euler’s Theorem. Let f : R
m
++ → R be C1. Then f is homogeneous of

degree γ if and only if
[

Dxf(x)
]

x = γf(x), that is

m∑

i=1

xi
∂f

∂xi
(x) = γf(x).

Nothing like Euler’s Theorem need hold for functions that are merely
homothetic. To see this, consider the homothetic function

f(x) =
∑

i

αi ln xi.

Then Df = (αi/xi), so

[

Dxf(x)
]

x =

(

α1

x1
, . . . ,

αm

xm

)

( x1
...
xm

)

=
∑

i

αi,

which cannot be written in the desired form because

[

Dxf(x)
]

x

f(x)
=

∑
i αi

f(x)
=

∑
i αi∑

i αi ln xi

is not constant.
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3.1.9 Homogeneous Functions and Their Derivatives REVIEW

Homogeneous functions have another interesting property. Their
derivatives are also homogeneous, with degree reduced by one.

Proposition 3.1.5. Suppose f is a C1 function onR
m
++ that is homogeneous

of degree γ and obeys Df 6= 0. Then Df is a homogeneous function of
degree (γ− 1).

The converse fails. If Df is homogeneous of degree β, we cannot
conclude that f is homogeneous of degree (β + 1). For example, let
m = 2 and consider f(x) = 1 + x1x2, which is not homogeneous of
any degree. A quick calculation shows that (Dxf)(x) = (x2, x1) which is
homogeneous of degree one. Although the function f is homothetic, it is
not homogeneous. Fortunately, addition of a constant is the main thing
that goes wrong with the converse when Df is homogeneous of degree
β for β 6= −1.
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3.1.10 Indefinite Integrals of Homogeneous Functions REVIEW

The case β = −1 can suffer from two other types of complications.
The first involves logarithmic functions. Suppose f(x) = b lnφ(x) where
φ is homogeneous of degree one with φ > 0. ThenDf = bDφ(x)/φ(x),
which is homogeneous of degree minus one.

The β = −1 case has a second type of complication when m > 1.
This allows functions to be homogeneous of degree zero without being
constant. One such function is g(x) = x1/(x1 + x2). Its derivative is

Dg =
1

(x1 + x2)2
(x2,−x1) ,

which is clearly homogeneous of degree minus one.
Once we take the above possibilities into account, we can obtain a

partial converse to Proposition 3.1.5.
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3.1.11 Degree Zero Homogeneity and Monotonicity REVIEW

But first, we want to consider whether such functions can be utility
functions. The logarithmic form f above poses no problem as such utility
functions are always used. The function g is a problem though. It is not
monotonic, and such functions are rarely used to describe utility. The
problem is not peculiar to the function g.

Proposition 3.1.6. Any function f ∈ C1(Rm++) withm > 1 that is homoge-
neous of degree zero is not monotonic.

However, it is possible to combine a logarithmic form with a homoge-
neous of degree zero form to get an increasing function with a derivative
that is homogeneous of degree minus one. The function

f(x1, x2) =
x1

x1 + x2
+ ln(x1 + x2)

is such a case. See Exercise 3.1.5.
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29.8 Differential Forms and Stokes’ Theorem

We will use Stokes’ Theorem to prove the converse to Proposition 3.1.5.
To make sense of Stokes’ Theorem, we need to learn a bit about differ-
ential forms.3

Stokes’ Theorem is an important result that originated in vector analysis,
later generalized to an advanced calculus version, differential geometry,
and eventually to geometric measure theory. It relates the integral of a
differential form to an integral of its derivative. It is an extremely powerful
generalization of the Fundamental Theorem of Calculus and of Green’s
Theorem. Before examining Stokes’ Theorem, we need to learn some
basics about differential forms.

3 This section is based on section 29.8 of the text, as reflected in the numbering.
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29.8.1 Derivatives vs. Differentials

When writing higher derivatives as linear functions, we found ourselves
using k-tensors to write the kth derivative. These could be represented
using tensor products dx1 ⊗ dx2 ⊗ dx3. If we tried to express these
higher derivatives as higher total derivatives, we might even write them
as ordinary products dx1 dx2 dx3.

There’s another place where we see products such as dx1 dx2 dx3—
integrals. Such expressions appear under the integral sign when we are
integrating with respect to multiple variables. So we have to ask, do they
mean the same thing? The answer is no!

What appears under the integral is not your ordinary tensor, it is a dif-
ferential form. These products are properly regarded as exterior products
rather than general tensor products. Differential forms are functions map-
ping into the exterior algebra generated by the basis {dx1, dx2, . . . , dxm}

and its exterior products. The exterior product is designed to study
lengths in R

1, areas in R
2, volumes in R

3, and hyper-volumes in R
m.
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29.8.2 One-Forms and k-Forms

First derivatives are often written as differential forms. One simple type
of differential form is the 1-form, where each term includes a single
differential, one of the dxi’s. Any 1-form ω can be written as

ω =
m∑

i=1

fi(x)dxi (29.8.1)

where the fi are functions.
A differential expression where each term involves products of k dif-

ferentials, is called a k-form. Thus the form ω given in Equation 29.8.1
is a 1-form because each term of the sum contains only a single dxℓ.

This definition also applies when k = 0, meaning that a 0-form involves
no differentials. In other words, it is a real-valued function f(x). We’ll
see that its exterior derivative coincides with the Fréchet derivative, re-
imaged as a one-form.

We will primarily use differential forms inside integrals, although they
have other uses. A k-dimensional integral will only involve k-forms. It is
possible to combine different types of forms, creating a graded algebra,
we will have no need to do so.
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29.8.3 First Derivatives as Differential Forms

What do the differentials dxi mean? Consider the ith coordinate function
given by xi(x) = xi. Then the differential of xi is its derivative, the row
vector

dxi = Dxi

=
(

δij
)m

j=1

=
(

0, 0, · · · , 0, 1, 0, · · · , 0
)

where the 1 occurs in the ith coordinate. This means that dxi = e∗
i , so

the differentials dxi are a basis for the space ofm-dimensional covectors,
(Rm)∗.

Now suppose u : R
m → R is a C1 function, its exterior derivative

(differential) can be written4

du =

(

∂u

∂x1
, . . . ,

∂u

∂xm

)

=
∑

i

∂u

∂xi
dxi.

We have written Du as a differential 1-form, du. Differential forms that
are derivatives of real-valued functions are called exact differentials.

4 For functions mapping into R, the differential 1-form and Fréchet derivative are the
same row vector for such functions. That’s generally not the case for higher derivatives.
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29.8.4 Bivectors

When dealing with k-dimensional integrals, we need to use k-forms,
which involve a special type of product of k differentials, the exterior
product. The simplest exterior product involves two vectors or covectors.
The exterior product can be regarded as a special type of tensor product
that is alternating—the sign of the exterior product flips when we reverse
the order of the vectors.

The exterior or wedge product of two vectors, x ∧ y is called a bivec-
tor.5 Similarly, exterior products can be applied to covectors, yielding
bicovectors.6

The exterior product has three important properties.

Exterior Products. The exterior or wedge product is

1. Associative: x∧ (y∧ z) = (x∧ y) ∧ z.

2. Alternating: x∧ y = −y∧ x, and

3. Two-linear: x∧ y is separately linear in both x and y.

The associative law tells us that exterior products of 3 vectors, 4 vectors,
etc. do not depend on how we associate them.

Because the wedge product is alternating, x∧ x = 0. In this context 0
refers to the zero bivector, not the zero vector.

5 The term 2-blade is sometimes used.
6 Mixed exterior products involving vectors and covectors are also possible.
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29.8.5 Exterior Product of Linearly Dependent Vectors is Zero

The wedge product of any linearly dependent set of vectors is zero.

Theorem 29.8.1. Suppose {x1, . . . , xn} is a linearly dependent set. Then

x1 ∧ x2 ∧ · · ·∧ xn = 0

where 0 is the zero n-vector.

Proof. Without loss of generality, we can assume that we can write x1

as a linear combination of the other xi. That is, x1 =
∑n

i=2 αixi for some
αi. Then

x1 ∧ x2 ∧ · · ·∧ xn =
n∑

i=2

αixi ∧ (x2 ∧ · · ·∧ xn)

= 0

since for each i = 2, . . . ,m, the ith term of the sum is zero due to the
repeated vector xi in the wedge product xi ∧ (x2 ∧ · · ·∧ xn). �
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29.8.6 The Bivectors form a Vector Space

The set of bivectors in R
m is a vector space because the exterior product

is bilinear. We denote space of bivectors by R
m∧R

m. Since it is a vector
space, it must have a basis. We can build one based on the standard
basis.

If we were dealing with covectors rather than vectors, we could use
{dxi} to form our basis, giving us differential forms.

We can also form trivectors, etc. Each set of k-forms are a vector space.
However, this only works for k = 1, . . . ,m. There is no point to forming
(m+1)-fold exterior products of vectors in R

m. Such vectors must make
a linearly dependent set, and by Theorem 29.8.1, their exterior product
is zero.
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29.8.7 Grassman’s Idea

Now that we know how to find a basis for the bivectors (or bicovectors)
we still have some questions concerning their use and meaning. Why are
bicovectors used in integrals? Can we represent bivectors and bicovectors
as geometric objects?

We deal with the geometric interpretation first as it will answer the other
question for us. Grassmann’s original idea (1844, 1861) was to construct
higher dimensional shapes by extension from lower dimensional shapes.
The exterior product accomplishes this extension. The bivector extends
two vectors into a two dimensional shape, specifically, a parallelogram.
Moreover, the bivector includes both the area of the parallelogram and
its orientation.7

One way to think about this is that x∧y starts with the vectors x and y

at zero, and then sweeps y along x, creating a parallelogram at the origin,
as illustrated in Figure 29.8.2. The parallelogram represents x∧ y.8

7 The process was described in similar terms by Grassman himself. Grassman (1844,
quoted in Crowe 1985, pg. 70) stated “We go from the vector to a spatial form of
higher order when we allow the entire vector, that is each point of the vector, to
describe another vector which is heterogeneous to the first, so that all points construct
an equal vector. The surface area produced this way has the form of a parallelogram.
Two such surface areas which belong to the same plane are designated as equal if the
direction of the moved vector lies on the same side...of the motion. When in the
two cases the corresponding vectors lie on opposite sides, then the surface areas are
designated unequal.”

8 The same principle is used in higher dimensions. As Crowe puts it (1985, pg. 72)
“Grassmann stated that a product such as a.b.c... was to mean that the vector a first
moves along b (as before), then the resultant oriented area would move along c, and
so on though orders higher than the third.”
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29.8.8 Bivectors Illustrated

Below, we show how the vector y slides along x to sweep out an area
(light blue).

x∧ y

b

y

x

x + y

Figure 29.8.2: The parallelogram swept out has area ‖x∧ y‖ (shaded).
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29.8.9 Bivector Area and Norm

The area of the associated parallogram is the norm of the bivector. This
is easiest to see in R

2. Consider any two vectors x,y in R
2. We can write

x = x1e1 + x2e2 and y = y1e1 + y2e2. Then

x∧ y = x1y1 e1 ∧ e1 + x1y2 e1 ∧ e2

+ x2y1 e2 ∧ e1 + x2y2 e2 ∧ e2.

= (x1y2 − x2y1)e1 ∧ e2

where we used the fact that the exterior product is alternating to simplify
the expression.

The coefficient on e1 ∧ e2 is

x1y2 − x2y1 = det
( x1 y1

x2 y2

)

.

As is well-known, the absolute value of this determinant is the area of the
parallelogram generated by x and y. The determinant here is positive,
but if we reversed the order of x and y, its sign would become negative.

Since R
2 ∧ R

2 is two-dimensional, we can write

‖x∧ y‖ =

∣

∣

∣

∣

det
( x1 y1

x2 y2

)

∣

∣

∣

∣

.
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29.8.10 Orientation and Bivectors

The sign of x∧ y, carries information about its orientation, whether it is
in standard orientation (counter-clockwise or right-handed) or reversed
orientation (clockwise or left-handed). Counter-clockwise orientation is
indicated by a positive sign, clockwise orientation by a negative sign. In
R

2 the bivector x∧ywill be one of +‖x∧y‖e1∧e2 or −‖x∧y‖e1∧e2,
depending on the orientation.

We think of the former as indicating a positive orientation, the latter a
negative orientation. The orientations are associated with rotations, and
the usual convention (the right-hand rule) associates counter-clockwise
rotations with a positive orientation, and clockwise rotations with a neg-
ative orientation. The orientation will be important when using multi-
covectors to define integrals.

x∧ y

b
x

x + y

y∧ x
b

y
x + y

Figure 29.8.3: In the left panel, the bivector x∧y defines a parallelogram in
R

2 with area ‖x ∧ y‖ (shaded) and in standard (positive, counter-clockwise)
orientation. Here the vector y bends from x in a counter-clockwise direction.

In the right panel, the bivector x ∧ y defines the same parallelogram,
but with reversed (negative, clockwise) orientation, reflecting the fact that
y∧ x = −x∧ y. Here x bends from y in clockwise fashion.
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29.8.11 Integrals and Bivectors

The norm of a bivector tells us the area of its associated parallelogram
just as the norm of a vector gives us the length of its line segment from
the origin. We using covectors, dx is used to measure the length of line
segments, while dx∧ dy measures parallelograms.

The connection with integration is that to integrate a function over a
line segment, Riemann taught us to divide the segement into smaller and
smaller pieces. The integral is then the limit of the Riemann sums formed
from the pieces as the pieces shrink to zero, if the limit exists. If not, the
function is not Riemann integrable.

Because parallelograms fit together without gaps or overlaps, we can
divide the region of integration into smaller and smaller parallelograms,
or bivectors. We form the analogous Riemann sums and take the limit,
which exists if the function is Riemann integrable. We can also use
this strategy on functions defined over two-dimensional differentiable
manifolds.
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29.8.12 Integrals and Trivectors, etc.

To integrate over a three-dimensional region, we use trivectors, which
define parallelepipeds. In that case, the norm of the trivector is the
volume of the associated parallelepiped.

This generalizes to exterior products of k vectors, x1, x2, . . . , xk, which
define k-dimensional parallelotopes by

{

x : x =
k∑

i=1

tixi, 0 ≤ ti ≤ 1

}

.

The k-dimensional volume is again the norm of the wedge product. This
is why we use k-forms to integrate over k-dimensional manifolds.

Keep in mind that we’re using signed areas, so the integrals depend on
the direction we use to traverse the region we integrate over. You’ve seen
this when you took calculus. Definite integrals on [a, b] ⊂ R change sign
when you reverse the direction in which you traverse the interval:

∫b

a

f(x)dx = −
∫a

b

f(x)dx
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29.8.13 A Basis for Bivectors

Any bivector in R
2 ∧ R

2 can be written

x∧ y = (x1e1 + x2e2) ∧ (y1e1 + y2e2)

= x1e1 ∧ (y1e1 + y2e2) + x2e2 ∧ (y1e1 + y2e2)

= x1y1 e1 ∧ e1 + x1y2 e1 ∧ e2 + x2y1 e2 ∧ e1 + x2y2 e2 ∧ e2

= (x1y2 − x2y1)e1 ∧ e2

= det(x,y)e1 ∧ e2

where the fact that the wedge product is alternating has been used to
simplify the product. This implies that R2 ∧ R

2 is a one-dimensional
vector space. Similarly, the alternating property means that Rm ∧ R

m is
an m(m− 1)/2-dimensional vector space.

More generally, ∧kRm has dimension

(m

k

)

=
m!

(m− k)!k!
,

the number of combinations of m basis vectors taken k at a time.
It follows that ∧mRm is a one-dimensional vector space, as we saw with

R
2 ∧R

2. That means that e1 ∧ · · ·∧ em (for vectors) or dx1 ∧ · · ·∧ dxm
(for covectors) can be used as its only basis element.
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29.8.14 Bivector Products are not Unique

There is a complication when trying to show a set of bivectors is linearly
independent. There may be many ways to write the same bivector.
Suppose a and b are linearly independent. Form the exterior product

[

(1 − s)a + sb
]

∧
[

(1 − t)a + tb
]

= (1 − s)a∧ tb + (1 − t)b∧ sa

=
[

t− st− s+ st
]

a∧ b

=
[

t− s
]

a∧ b.

So whenever t − s = 1, the exterior product of (1 − s)a + sb and
(1 − t)b∧ sa is a∧ b.

This sort of thing could cause trouble when trying to define a basis for
the space of bivectors in R

m. However, it is not a problem when building
our basis from a basis for Rm. Here’s how it works for the standard basis.
Suppose we have a bivector

x =
∑

i<j

xij ei ∧ ej = 0.

We restrict ourselves to i < j because ei∧ej = −ej∧ei. If we take the
exterior product of the this with the any ek with k 6= i, j, all of the terms
other than the ij term will have a wedge product containing repeated
basis vectors. Those must be zero. That leaves us with ±xij ek∧ei∧ej,
which is zero since the sum is zero. This allows us to show that {ei∧ej :
i < j} is a linearly independent set.
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29.8.15 k-fold Exterior Products

We noted earlier that dimension of the k-fold exterior product of Rm is
given by dim∧kRm = m!/k!(m− k)!. This means that

dim∧0
R
m = 1 = dim∧mRm

dim∧1
R
m = m = dim∧m−1

R
m

dim∧2
R
m = m(m− 1) = dim∧m−2

R
m

etc.

This suggests these pairs of spaces are isomorphic. There is a natural
isomorphism that depends on the inner product and the basis. For sim-
plicity, we restrict our attention to R

m with the Euclidean inner product
and standard basis.

We introduce a shorthand notation for k-fold wedge products of vec-
tors. For any ordered index set I = {i1 < · · · ik} ⊂ {1, . . . ,m}, define
the complementary ordered index set I′ = {i′1 < · · · < i′m−k} such that
I ∪ I′ = {1, . . . ,m} and define #I = k (so #I′ = m− k). Then denote
the k-fold exterior product of {eik : ik ∈ I} by

eI = ei1 ∧ ei2 · · ·∧ eik
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29.8.16 The Hodge Star Operator

The Hodge star operator is the linear operator from each ∧kRm to
∧m−k

R
m such that

⋆eI = sgnσ(II′)eI′

where sgnσ(II′) is the sign of the permutation II′ = i1i2 · · · iki′1 · · · i′m−k.
That is, σ(II′) is −1 for permutations using an odd number of interchanges
and +1 for permutations using an even number of interchanges.

This means that in R
3,

⋆e1 = e2 ∧ e3,

⋆e2 = −e1 ∧ e3,

⋆e3 = e1 ∧ e2.

Similarly, ⋆(e1 ∧ e2) = e3, ⋆(e1 ∧ e3) = −e2, and ⋆(e2 ∧ e3) = e1.
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29.8.17 Inner Products of k-vectors SKIPPED

If we have an inner product x ·y on R
m, we can extend the inner

product to ∧kRm as follows. If α = α1∧ · · ·∧αk and β = β1∧ · · ·∧βk,
we define α·β = det

(

αi ·αj
)

. Since the linear product is linear, this is
easily extended to all of ∧kRm.

The Hodge star operator can be defined generally in terms of the inner
product. If we work in terms of the Euclidean inner product and standard
orthonormal basis on R

m, e1, . . . ,em and set ω = e1 ∧ · · ·∧ em, then
given β ∈ ∧kRm, the Hodge star ⋆β is the unique element of ∧m−k

R
m

such that
α∧ (⋆β) = (α·β)ω

for every α ∈ ∧kRm.
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29.8.18 The Vector Cross Product SKIPPED

The Hodge star allows us to write the 3-dimensional vector cross prod-
uct in terms of the wedge product.

Recall that the vector cross product is defined on R
3 by

x× y = (x2y3 − y2x3)e1 − (x1y3 − y3x1)e2 + (x1y2 − y1x2)e3.

Now compute

x∧ y = x1y2 e1 ∧ e2 + x1y3 e1 ∧ e3 + x2y1 e2 ∧ e1 + x2y3 e2 ∧ e3

+ x3y1 e3 ∧ e1 + x3y2 e3 ∧ e2

= (x1y2 − x2y1)e1 ∧ e2 + (x1y3 − x3y1)e1 ∧ e3

+ (x2y3 − x3y2)e2 ∧ e3.

Then apply the Hodge star operator, obtaining

⋆(x∧ y) = (x1y2 − x2y1)e3 − (x1y3 − x3y1)e2

+ (x2y3 − x3y2)e1

= x× y.

Although the vector cross product only exists in R
3, we can consider

⋆(x∧ y) in other dimensions. For example, in R
2,

⋆(x∧ y) = ⋆

(∣

∣

∣

∣

x1 y1

x2 y2

∣

∣

∣

∣

e1 ∧ e2

)

=

∣

∣

∣

∣

x1 y1

x2 y2

∣

∣

∣

∣

.
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29.8.19 Differential Forms

We can now give differential forms a proper definition. Let (Rm)∗ denote
the space of m-dimensional covectors, the dual of Rm.

Differential Form. Let U be an open subset of Rm. A Ck differential form
of order ℓ on U is a Ck mapping from U to ∧ℓ(Rm)∗, the ℓ-fold exterior
product of the dual of Rm. We can write it as

∑

{I:#I=ℓ}

fI(x)dxI

where each fI : U→ R is Ck.9

The simplest such differential form is a zero form, where I is empty and
the form is a real-valued function. We have also encountered 1-forms,
where every set I has a single element. E.g., I is successively {1}, . . . , {m},
yielding

ω = f1(x)dx1 + f2(x)dx2 + · · · + fm(x)dxm.

9 The functions fI are functions of all m variables, not just those in I.
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29.8.20 The Exterior Derivative 01/12/23

Differential forms have derivatives. To compute them, we use a special
type of derivative called the exterior derivative. The exterior derivative of
a k-form is a (k+ 1)-form. The exterior derivative of a 0-form, a smooth
function f mapping R

m into R, is just its derivative, which we write as10

df =
m∑

i=1

∂f

∂xi
dxi.

Exterior Derivative. The exterior derivative is the unique linear mapping
from k-forms to (k+ 1)-forms that has the following properties:

1. df is the differential of f for any 0-form f.

2. d(df) = 0 for any 0-form f.

3. If α is a ℓ-form and β a differential form, then d(α ∧ β) = dα ∧

β+ (−1)m(α∧ dβ).

10 Recall that df is a covector, and that the dxi form a basis for covectors.
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29.8.21 Calculating Exterior Derivatives I

Let’s calculate the exterior derivative of a 1-form. Let

ω =
m∑

i=1

fi dxi

where the fi are all C1 functions. To take the exterior derivative of such
a form, think of the ith term as the 0-form fi times the 1-form dxi. We
focus on the term d(fi dxi).

d(fi ∧ dxi) = dfi ∧ dxi + (−1)mfid(dxi) = dfi ∧ dxi

since d(dxi) = 0. Now use the fact that dfi =
∑m

j=1(∂fi/∂xj)dxj to
obtain

d(fi ∧ dxi) =





m∑

j=1

∂fi

∂xj
dxj



∧ dxi.
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29.8.22 Calculating Exterior Derivatives II

To find dω, we add up the d(fi ∧ dxi) terms.

dω =
m∑

i=1

dfi ∧ dxi =
m∑

i=1





m∑

j=1

∂fi

∂xj
dxj



∧ dxi

=
m∑

i=1

m∑

j=1

∂fi

∂xj
dxj ∧ dxi

=
∑

i<j

∂fi

∂xj
dxj ∧ dxi +

∑

i>j

∂fi

∂xj
dxj ∧ dxi

=
∑

i<j

∂fi

∂xj
dxj ∧ dxi +

∑

j>i

∂fj

∂xi
dxi ∧ dxj

=
∑

i<j

∂fi

∂xj
dxj ∧ dxi −

∑

i<j

∂fj

∂xi
dxj ∧ dxi

=
m∑

j=1

j−1∑

i=1

(

∂fi

∂xj
− ∂fj

∂xi

)

dxj ∧ dxi (29.8.2)

The antisymmetry made the i=j terms disappear in the third line, al-
lowing us to divide the sum into two parts. We switched indicies in the
second sum of the fourth line, and applied antisymmetry again in the
fifth line.

Applying the same procedure to 2-forms, 3-forms, etc. allows us to
inductively define the exterior derivatives of any k-form.
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29.8.23 Some Exterior Derivatives

For example, consider the 2-form

ω = xdy∧ dz+ ydz∧ dx+ z dx∧ dy.

We think of the terms of ω as products of 0-forms and 2-forms, e.g.,
α = x and β = dy∧ dz. The derivative of the 2-form always involves a
d2 term and so is zero. We than have

dω = dx∧ dy∧ dz+ dy∧ dz∧ dx+ dz∧ dx∧ dy

= dx∧ dy∧ dz− dy∧ dx∧ dz− dx∧ dz∧ dy
= dx∧ dy∧ dz+ dx∧ dy∧ dz+ dx∧ dy∧ dz

= 3dx∧ dy∧ dz.

Different types of differential forms can be distinguished by the number
of wedge products involved. The Fréchet derivative of a function from
R
m → R can be regarded as creating a 1-form.
Of course, the wedge product only allows products to go as far as

m-forms. Any exterior derivative past that is 0, reflecting the fact that in
R
m, it is impossible to obtain any (m+1)-dimensional forms.
Another useful fact is that d(dxI) = 0 for any index set I. You can show

this by repeatedly applying rule (3) of the exterior derivative to any dxI.
For example, when m ≥ 3,

d
(

dx1 ∧ dx2 ∧ dx3

)

= d2x1 ∧ dx2 ∧ dx3 − dx1 ∧ d(dx2 ∧ dx3)

= −dx1 ∧ (d2x2 ∧ dx3 − dx2 ∧ d
2x3)

= 0.
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29.8.24 Closed and Exact Differentials

Differential forms ω with dω = 0, are called closed differentials.. An im-
portant fact is that exact differentials—exterior derivatives of functions—
are closed differential forms if the original function is C2.

Theorem 29.8.4. Let u ∈ C2. Then du is a closed differential form, that
is, d(du) = 0.

Proof. Suppose u is a C2 function and consider the differential du. We
use equation (29.8.2) with fj = ∂u/∂xj to obtain

d(du) =
m∑

i=1

m∑

j=i+1

[

∂

∂xi

(

∂u

∂xj

)

− ∂

∂xj

(

∂u

∂xi

)]

dxi ∧ dxj. (29.8.3)

Now u is twice continuously differentiable, so the cross-partial terms are
equal:

∂

∂xi

(

∂u

∂xj

)

=
∂

∂xj

(

∂u

∂xi

)

.

But then they cancel out when we substitute them in equation (29.8.3).
That means d(du) = 0, establishing that du is closed. �
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29.8.25 Wedge Products and Determinants SKIPPED

The wedge product has some other uses. Suppose dfj =
∑m

k=1 fjk dxk
for j = 1, . . . ,m. We can then write

m
∧

i=1

dfi = A(f1, . . . , fm)dx1 ∧ dx2 · · ·∧ dxm.

for some multilinear function A. Moreover, if we interchange any
two distinct dfj and dfk, the sign flips (A is alternating). Finally, if
dfj =

∑m
i=1 dxi, some calculation reveals that ∧mj=1dfj = ∧mj=1dxj, so

A(e1, . . . ,em) = 1. In other words, A(f1, . . . , fm) must be the determi-
nant:

A(f1, . . . , fm) =

∣

∣

∣

∣

∣

∣

∣

∣

f11 f12 · · · f1m
f21 f22 · · · f2m
... . . . ...
fm1 fm2 · · · fmm

∣

∣

∣

∣

∣

∣

∣

∣

where fij = ∂fi
∂xj

.
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29.8.26 Stokes’ Theorem

Stokes’ Theorem is an important result from advanced calculus and geo-
metric measure theory that relates integrals of differential forms and of
their derivatives. It is an extremely powerful generalization of the Fun-
damental Theorem of Calculus and of Green’s Theorem.

We now consider Stokes’ Theorem.11

Stokes’ Theorem. If M is a n-dimensional manifold with boundary ∂M

and ω is a C1 (n−1)-form with compact support on M, then
∫
M
dω =∫

∂M
ω.

There are more general versions of Stoke’s Theorem, where the man-
ifold is actually a bunch of manifolds pasted together. We will apply
Stokes’ Theorem to curves. More general versions of Stokes’ Theorem
allow us to apply it to manifolds where the boundary consists of piece-
wise smooth curves with 90◦ corners. Dealing with all of the details
would take us far afield, so we won’t. Nonetheless, we will use Stokes’
Theorem on manifolds with corners.12

11 See Buck and Buck (1978, sec. 9.4), Fleming (1965, pg. 273) or Spivak (1965,
pg. 102).
12 A version that properly handles corners can be found in sec. III.14 of Whitney (1957).
The formula is essentially the same.
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29.8.27 Stokes and the Fundamental Theorem of Calculus

Among other things, Stokes’ Theorem generalizes the Fundamental The-
orem of Calculus. Let ω = f and M be the interval [a, b]. Then its
boundary is ∂M = {a, b}. Normally, when we integrate f over a finite
set, we add the values of f at the points in the set, with a weight of +1
on the ending point b and −1 on the starting point a.

Here we must take the orientation into account. When the orientation
is negative, we take b as the starting point and a as the ending point.
Equivalently, we assign a sign of +1 to the integral when the interval is
oriented from a to b and −1 when it is oriented from b to a.

a b

+

a b

–

Figure 29.8.1: The left interval has postive orientation and the right interval
has negative orientation.

Since M has a positive orientation, we assign a weight of +1 to the
ending point b and −1 to the starting point a. The integral then becomes

∫

∂M

f(x) = f(b) − f(a)

Since dω = f′ dx, Stokes’ Theorem then tells us that

∫b

a

f′ dx =

∫

M

f′ dx =

∫

∂M

f = f(b) − f(a).

Notice that our orientation convention ensures that

∫b

a

f′(x)dx = −
∫a

b

f′(x)dx.
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29.8.28 Stokes’ Theorem and Line Integrals I

In our application, we will have a C2 function and consider its differential
du. As an exact differential, du is closed by Theorem 29.8.4.

We will be interested in computing integrals of the form
∫
γ
du where

γ is a path in R
2. We first show that the integral doesn’t depend on the

path taken. Let γ1 and γ2 be two non-intersecting paths between x and
y. Define γ by following γ1 from x to y, and then γ2 in reverse back to
x. In other words, γ : [0, 1] → R

2 is defined by

γ(t) =

{
γ1(2t) for 0 ≤ t ≤ 1/2

γ2(2 − 2t) for 1/2 ≤ t ≤ 1.

Because γ1(1) = y = γ2(1), the curve γ is unambiguously defined at
t = 1/2. Further γ(0) = γ1(0) = x and γ(1) = γ2(0) = x, so the curve
circles back to its starting point.

Let M be the area enclosed by γ. For reasonable γ, the path γ is the
boundary of M.13

y
b

x
b

γ1

γ2

M

Figure 29.8.5: Both γ1 and γ2 are curves from x to y. We paste them
together by traversing γ1 and then travelling in reverse along γ2 (reversing its
orientation). The arrows indicate the original orientation of γ1 and γ2. The
combined curve enclosed M, a manifold with boundary γ.

13 The term “reasonable” glosses over a lot of details. It includes the case where γ is
piecewise smooth.
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29.8.29 Stokes’ Theorem and Line Integrals II

Stokes’ Theorem now tells us that

∫

γ

du =

∫

M

d(du) = 0

since du is closed. But now
∫
γ
du =

∫
γ1
du−

∫
γ2
du = 0, showing that

both paths from x to y have the same integral:

∫

γ1

du =

∫

γ2

du

Thus if u ∈ C2 and γ is a well-behaved path from x to y, we now know
that

∫
γ
du depends only on the endpoints, not how we get between

them. We can use Stokes’ Theorem a second time to calculate
∫
γ
du by

treating the path γ itself as a manifold with boundary. Its boundary is
{x,y}.

Then the integral over {x,y} becomes

∫

∂γ

u = u(y) − u(x).

This extends our previous calculation showing that Stokes’ Theorem in-
cludes the Fundamental Theorem of Calculus. Here it is further extended
to include line integrals between two points x and y.14

14 We restricted our attention to R
2 to avoid complications that might occur if the two

paths were not in the same plane. Eliminating that restriction requires additional work.
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29.8.30 Coordinate Transformations

The integrals in Stokes’ Theorem are ultimately based on Lebesgue or
Riemann integrals, which give standard notions of length, area, volume,
etc. in Euclidean space.

What happens if we use different coordinates in our integrals? Let’s
transform our usual rectilinear coordinates (x, y) to polar coordinates.
Here x = r cos θ and y = r sinθ. Of course, under the integral sign,
dxdy is another way of writing the 2-form dx ∧ dy. We can use the
theory of differential forms to do the change of coordinates. We have
dx = cos θdr− r sinθdθ and dy = sinθdr+ r cos θdθ. Then

dx∧ dy = r cos2 θdr∧ dθ− r sin2 θdθ∧ dr = r dr∧ dθ

which is the area element in 2-dimensional Euclidean space.
In fact, the area element is also the Jacobian determinant of the trans-

formation times the polar area element. The relevant transformation
is

f(r, θ) =
( x

y

)

= ( r cos θ r sinθ ) .

The Jacobian determinant is

det J = detD(r,θ)f =

∣

∣

∣

∣

cos θ −r sinθ
sinθ r cos θ

∣

∣

∣

∣

= r,

so r dr∧ dθ is the area element in polar coordinates.
This same technique can be used to handle non-Euclidean transforma-

tions and transformations from one manifold to another. Basically, one
substitutes coordinates in both the function and the differential form.
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3.1.12 Converse of Proposition 3.1.5

We now provide a near converse to Proposition 3.1.5.

Theorem 3.1.7. Suppose f ∈ C2 on R
m
++ and Df 6= 0 is homogeneous of

degree β in x on R
m
++.

1. If β 6= −1, there is a constant c and a homogeneous of degree one

function v(x) such that f(x) = c+
(

v(x)
)1+β

.

2. If β = −1, there is a constant b, a homogeneous of degree zero
function φ(x), and a homogeneous of degree one function v(x) with
f(x) = φ(x) + b ln v(x). Either b or φ may be zero.

Proof. Since f ∈ C2, df (not Df!) is a closed form by Theorem 29.8.4.
Stokes’ Theorem then tells us that

∫
α
df = f(x) − f(x0) for any path α in

R
m
++ running from x0 to x.
We consider the effect of the transformation x → tx on the integral∫
α
df. The transformed interval is t times a long, so we multiply the dxi

terms by t to accomodate the new length as well as substituting tx in the
integrand. That makes df =

∑
i(∂f/∂xi)dxi homogeneous of degree

1 + β. Then
f(tx) − f(tx0) = t1+β[f(x) − f(x0)]. (3.1.1)

To learn more about f(tx0), define g(t) = f(tx0). Then g′(t) =
[

Df(tx0)
]

x0 = tβ
[

Df(x0)
]

x0 is homogeneous of degree β. Since g′

is a function of one variable, we can write g′(t) = btβ.

Proof continues on next page . . .
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3.1.13 Part (2) of Proposition 3.1.5

Part (2) of Proof. There are now two cases to consider: (a) β 6= −1
and (b) β = −1.

In case (a), β 6= −1. We next show b 6= 0 for some x0. Suppose, by
way of contradiction, that b =

[

Df(x0)
]

x0 is zero for all x0, f must be
homogeneous of degree zero by Euler’s Theorem. But in that case Df
must be homogeneous of degree minus one, contradicting β 6= −1.

As a result, there must be a x0 with b 6= 0. We now integrate g′ to
obtain g(t) = c+ b′t1+β for some constant c and b′ = b/(1 + β). Then

f(tx) = f(tx0) + t1+β[f(x) − f(x0)]

= g(t) + t1+β[f(x) − g(1)]

= c+ b′t1+β + t1+βf(x) − t1+β(c+ b′)

= c(1 − t1+β) + t1+βf(x).

It follows that f(tx) − c = t1+β[f(x) − c]. Thus f(x) − c is homogeneous
of degree (1 +β). Take the (1 +β) root to obtain v(x) = [f(x)− c]1/(1+β).

The function v is homogeneous of degree one and f(x) = c+
(

v(x)
)1+β

,
establishing part (a).

Proof concludes on next page . . .
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3.1.14 Part (3) of Proposition 3.1.5

Proof of Case (b). In case (b), β = −1. Now g′(t) = b/t. As we
saw above, b might be zero. We again integrate g′, now obtaining
g(t) = c+ b ln t where c is a constant of integration.

Equation 3.1.1 now simplifies to

f(tx) − f(tx0) = f(x) − f(x0). (3.1.2)

Substitute f(tx0) = g(t) = c+ b ln t and f(x0) = g(1) = c to obtain

f(tx) = c+ b ln t+ f(x) − c = f(x) + b ln t.

Notice that the constant term c disappeared.
If b = 0, this shows that f is homogeneous of degree zero. We can

then write f(x) = φ(x) with φ homogeneous of degree zero.
If b 6= 0, define v(x) = exp[f(x)/b]. An easy calculation shows that

v(tx) = exp[f(tx)/b] = t exp[f(x)/b]. Thus v is homogeneous of degree
one and setting φ(x) = 0 yields the result. This completes the proof of
part (b) and of the theorem. �

In the case b 6= 0, and φ is homogeneous of degree zero, we can also
write

f(x) = φ(x) + b ln
[

e−φ(x)/bv(x)
]

.

As −φ(x)v(x)/b is homogeneous of degree 1, this provides a unified way
to write f when β = −1.
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3.2 Additive Separability

Our study of separability begins with the most basic type of separability:
additive separability. We will derive a condition that is equivalent to
additive separability for smooth utility functions. This allows us to char-
acterize the monotonic transformations that preserve separability. This
lays the groundwork for considering more general separability of both
utility and of preferences in the next section.
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3.2.1 Additive Separable Utility

Just as homothetic utility naturally lives on cones, separable utility natu-
rally lives on product spaces. To simplify the presentation, we restrict our
attention to two cases: the positive orthant Rm+ and the strictly positive
orthant Rm++.15

We often use the strictly positive orthant to avoid continuity or differen-
tiability issues that may arise if some xi = 0. For example, even though
the Cobb-Douglas utility u(x1, x2) =

√
x1x2 is defined and continuous

on all of R2
+, it is not differentiable if either x1 = 0 or x2 = 0.

Let the consumption set X be either Rm+ or Rm++ and u be a C2 utility
function, u : X → R. We say utility u is additive separable on X if there
are functions ui : R+ → R or ui : R++ → R, as appropriate, so that

u(x) =
∑

i

ui(xi). (3.2.3)

We refer to the functions ui as subutility functions.
It is easily verified that additive separability of utility is not preserved

by arbitrary increasing transformations. For example, if we square
u(x1, x2) = x1 + x2, we obtain (x1 + x2)2, which is a utility function
that cannot be rewritten in an additive separable form. That tells us that
additive separability is a cardinal property, not an ordinal property.

The only increasing transformations that obviously preserve the additive
separable form are increasing affine transformations, defined by ϕ(u) =
au + b for some a > 0. Part (2b) of Theorem 3.2.1 shows that the
affine transformations are the only transformations that preserve additive
separability.

15 For a treatment of more general product spaces, see Fishburn (1970, chapters 4-5).
Fishburn does not cover the differentiable case.
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3.2.2 Characterization of Additive Separability I

Together, Theorems 3.2.1 and 3.2.3 characterize additive separable utility
functions.

Theorem 3.2.1. Let X be R
m
+ or R

m
++ and u : X → R be a C2 additive

separable utility function.

1. Then whenever i 6= j,

∂2u

∂xj ∂xi
= 0.

2. Suppose further that u′
k 6= 0 for at least two goods k. If ϕ is a C2

monotonic increasing transformation such that v = ϕ ◦ u is also
additive separable, then ϕ = au+ b for some a > 0.

Proof. By additive separability, we can write u(x) =
∑
ui(xi).

Part (1). The marginal utility of good i is ∂u/∂xi = u′
i(xi). As this

marginal utility does not depend on xj whenever i 6= j,

∂2u

∂xj ∂xi
=

∂

∂xj

(

∂u

∂xi

)

= 0.

(Proof concludes on next page...)
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3.2.3 Characterization of Additive Separability II

Part (2). Now suppose ϕ ∈ C2 preserves additive separability. Since
ϕ(u) is also separable, part (1) tells us that

0 =
∂2ϕ

(

u(x)
)

∂xj ∂xi
=

∂

∂xj

(

ϕ′(u(x)
) ∂u

∂xi

)

= ϕ′′ ∂u

∂xi

∂u

∂xj
+ ϕ′ ∂2u

∂xj ∂xi

= ϕ′′ ∂u

∂xi

∂u

∂xj
+ 0

= ϕ′′u′
i(xi)u

′
j(xj).

By hypothesis at least two goods have u′
i > 0, allowing us to conclude

that ϕ′′ = 0.
Integrating ϕ′′ twice, we find ϕ = au+b for some constants a and b.

In other words, ϕ must be an affine transformation. Moreover, since ϕ
is increasing, a > 0. �
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3.2.4 Separability with a Single Good

The requirement that at least two commodities have non-zero derivatives
is needed in part (2) of Theorem 3.2.1. If there is only one such good,
the utility function depends only on one good. In that case additive
separability becomes a trivial condition and part (2) of Theorem 3.2.1
may fail as in the following example.

Example 3.2.2: Separability with One Good Consider the utility func-
tion on R

2
+ given by u(x) = x1. This is additive separable, as is the

equivalent representation (x1)2. In both cases the subutility for good two
is zero. Here the transformation ϕ(u) = u2 preserves the preference
order and even gives us a new additive separable form, even though the
transformation is not affine. ◭
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3.2.5 Characterization of Additive Separability III

You may wonder whether the condition ∂2u
/

∂xj∂xi = 0 for all i and j
with i 6= j characterizes C2 additive separable utility functions. In fact, it
does.

Theorem 3.2.3. Let X = R
m
+ or Rm++ and suppose u : X → R is C2 with

∂2u

∂xj ∂xi
= 0

for all i and j with i 6= j. Then there are functions ui : R+ → R or
ui : R++ → R, respectively, such that u(x) =

∑
i ui(xi).

Proof. We will prove the theorem in the case when X = R
m
+ . Without

loss of generality, we may presume u(0) = 0.16 Consider the differential

du =
∑

i

∂u

∂xi
dxi.

As the derivative of a C2 function, du is a closed differential form (Theo-
rem 29.8.4). By Stokes’ Theorem, the integral of du along any path from
0 to x will be the same.

Now consider a path γ from 0 to x. By Stokes’ Theorem,
∫
γ
du =

u(x)−u(0) = u(x). By choosing our path γ in the right way, we will end
up with an additive separable expression.

(Proof concludes on next page...)

16 In the case that X = R
m
++, we replace 0 by any x0 ∈ X. In all the following equations,

each 0 is then replaced by the appropriate x0
j .
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3.2.6 Characterization of Additive Separability IV

Rest of Proof. Start γ at 0, run along the x1-axis to (x1, 0, . . . , 0), next
run parallel to the x2-axis to (x1, x2, 0, . . . , 0), then on to (x1, x2, x3, 0, . . . ),
et cetera, until we finally reach x = (x1, x2, . . . , xm) along a path parallel
to the xm-axis. This yields

u(x) =
m∑

i=1

∫xi

0

∂u

∂xi
(x1, x2, . . . , xi−1, x

′
i, 0, . . . , 0)dx′i (3.2.4)

Now consider what happens to the integral along each segment. We
have

∫xi

0

∂u

∂xi
(x1, x2, . . . , xi−1, x

′
i, 0, . . . , 0)dx′i

=

∫ xi

0

∂u

∂xi
(0, 0, . . . , 0, x′i, 0, . . . , 0)dx′i

since ∂u/∂xi depends only on xi (zero cross-partials). We define ui(xi)
to be the latter integral.

ui(xi) =

∫xi

0

∂u

∂xi
(0, 0, . . . , 0, x′i, 0, . . . , 0)dx′i

Substituting in equation 3.2.4, we obtain

u(x) =
m∑

i=1

ui(xi).

�
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3.2.7 Additive Separability and the MRS

In other words, u is a C2 additive separable utility representation if and
only if ∂2u

/

∂xj∂xi = 0 for all i 6= j. This can sometimes be used to find
a transformation that yields an additive separable representation.

Before showing how this works, it is useful to note another property that
additive separable utility has that is shared by all differentially equivalent
utility functions. The marginal rates of substitution between any pair of
distinct goods depends only on the consumption of those two goods. It
is unaffected by the consumption level of any other good.

Proposition 3.2.4. Let X = R
m
+ or Rm++ withm > 2. Suppose u and v are

C1 utility functions on X with du, dv≫ 0 and that there is an increasing
C1 function ϕ with v = ϕ ◦ u. If either u or v is additive separable, then
both MRSuij and MRSvij are independent of xk for every triple of distinct
goods, i, j, and k.

Proof. When utility u is additive separable, the marginal rate of substi-
tution is

MRSuij =
u′
i(xi)

u′
j(xj)

.

It depends solely on the consumption levels xi and xj. It is independent
of the consumption level of any other good.

By Theorem 1.3.8, MRSuij = MRSvij, so if one of them is additive
separable, both are independent of xj for every k 6= i, j.

The argument of Theorem 1.3.8 is simple.

MRSvij =
∂v/∂xi

∂v/∂xj
=
ϕ′ ∂u/∂xi
ϕ′ ∂u/∂xj

=
u′
i(xi)

u′
j(xj)

= MRSuij .

�
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3.2.8 Restriction to 3 or More Goods

Three Goods. Proposition 3.2.4 requires that m > 2, that there are at
least three goods. This is necessary because the condition that MRSij be
independent of xk for k 6= i, j with i 6= j requires at least three goods in
its definition.

When there are three or more goods, Proposition 3.2.4 tells us that
if a utility function is differentially equivalent to an additive separable
utility function, then the marginal rate of substitution between any two
goods depends only on the quantities consumed of those two goods. The
Smooth Separability Theorem from section 3.4 shows that this condition
is also sufficient for a utility function to be differentially equivalent to
an additive separable utility function, at least provided there are at least
three goods.
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3.2.9 Testing for Additive Separability

Proposition 3.2.4 allows us test whether a utility function is equivalent to
an additive separable utility function by examining the marginal rates of
substitution. If the utility function passes the test, we can then use our
second derivative condition (Theorems 3.2.1 and 3.2.3) to attempt to
find how to transform it into additive separable form. We illustrate this
with Cobb-Douglas utility.

Example 3.2.5: Separability and Cobb-Douglas Utility Consider the
Cobb-Douglas utility function u(x) =

∏m
i=1 x

γi
i where each γi > 0. The

marginal rates of substitution are MRSij = γixj/γjxi. As these depend
only on xj and xi, there is a way to transform u into an additive separable
form.

Suppose ϕ is an increasing transformation that yields an additive sep-
arable v = ϕ ◦ u. We compute the second partial derivatives to obtain
a differential equation for ϕ.

Now

0 =
∂2ϕ

(

u(x)
)

∂xj ∂xi
= ϕ′′ ∂u

∂xi

∂u

∂xj
+ϕ′ ∂2u

∂xj ∂xi

= γiγjϕ
′′ u

2

xjxi
+ γiγjϕ

′ u

xjxi
.

Thus ϕ′′u+ϕ′ = 0 where ϕ′ = dϕ/du and ϕ′′ = d2ϕ/du2.
We solve this differential equation by using the substitution ψ = ϕ′ to

find ψ′u + ψ = 0. This is easily integrated, obtaining ψ(u) = C/u for
some constant C. That means ϕ′ = C/u. A second integration yields
ϕ(u) = C lnu+D. The requirement that ϕ is increasing means C > 0.

Any transformation of the form ϕ(u) = C lnu + D with C > 0 will
transform u into an additive separable form. If we take C = 1 and
D = 0, we obtain ϕ

(

u(x)
)

=
∑m

i=1 γi ln xi. ◭



3. HOMOTHETICITY AND SEPARABILITY 59

3.2.10 What about Two Goods? SKIPPED

Two Goods. Unfortunately, the characterization of additive separable
utility via the marginal rate of substitution only applies when there are
three or more goods. Indeed, the condition that MRSij is independent
of the consumption of a third good is meaningless when there are only
two goods.

Another approach is necessary in the two good case. Suppose
u : R

2
+ → R is additive separable. Then u(x) = u1(x1) + u2(x2). It

follows that MRS12 = u′
1(x1)/u′

2(x2). Now consider the logarithm,

ln MRS12 = lnu′
1(x1) − lnu′

2(x2).

Here the logarithm of the marginal rate of substitution is additive sep-
arable. Is that enough to guarantee that u is additive separable? The
following proposition shows that it is.

Proposition 3.2.6. Let X be R
2
+ or R2

++ and suppose u : X → R is a C2

utility function with du≫ 0 and that ln MRSu12 is additive separable. Then
u is equivalent to an additive separable utility function.

Proof. When ln MRSu12 is additive separable, we can write ln MRSu12 =
φ1(x1) −φ2(x2). Define

ϕi(xi) =

∫

eφi(x′i) dx′i

and set v(x1, x2) = ϕ1(x1) + ϕ2(x2). By the Fundamental Theorem of
Calculus,

MRSv12 =
ϕ′

1

ϕ′
2

=
eφ1(x1)

eφ2(x2)
.

This implies ln MRSv12 = φ1 −φ2 = ln MRSu12. It follows that MRSv12(x) =
MRSu12(x) for all x ∈ X. By Corollary 2.6.9, u and v are equivalent. �
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3.2.11 Two Goods, the Complete Solution SKIPPED

By combining Proposition 3.2.6 and Theorem 3.2.3, we get necessary
and sufficient conditions for functions on R

2
+ to be additive separable.

Theorem 3.2.7. Let X be R
2
+ or R

2
++ and suppose u : R

2
+ → R or

u : R
2
++ → R is a C3 utility function. Then u is equivalent to an ad-

ditive separable utility function if and only if

∂2

∂x1 ∂x2
ln MRS12 = 0.

Proof. Suppose ∂2 ln MRS12

/

∂x1∂x2 = 0. Then ln MRS12 is additive
separable by Theorem 3.2.3. Proposition 3.2.6 then shows that u is
equivalent to an additive separable utility function.

Conversely, if u is equivalent to an additive separable utility function,
ln MRS12 is additive separable, and so has a zero cross partial deriva-
tive. �
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3.2.12 Group Additive Separable Utility

We do not need to restrict ourselves to subutility functions that depend
only on a single good. We can also consider subutility functions that
depend on multiple goods. For example, we might have u(x) = x3 +
(x1x2x4)1/2 = u3(x3) + u1(x1, x2, x4). This utility function also exhibits a
limited type of additive separability.

To formalize this, we introduce commodity groups.
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3.2.13 Commodity Groups

In R
m
+ , the set of goods or commodities is G = {1, ...,m}.

Commodity Group. Let G be the set of commodities. A commodity group
is a subset A of G.

Given a commodity group A, define the vectors xA = (xi)i∈A and
x∼A = (xi)i/∈A. We slightly abuse notation to write x = (xA, x∼A).

In the utility function above, we might take {3} or {1, 2, 4} as A. If
taken literally, writing x = (xA, x∼A) would mean that we would be
writing x as

(

x3, (x1, x2, x4)
)

or
(

(x1, x2, x4), x3

)

, respectively, instead of
(x1, x2, x3, x4). We don’t intend x = (xA, x∼A) to be taken literally, and
always interpret (xA, x∼A) as the original x. We use the notation R

A to
denote the set of all xA.
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3.2.14 Partitioning Commodities into Groups

A partition of the space of goods G = {1, . . . ,m} (or of any set) is a
collection P of disjoint subsets P ⊂ G whose union is the entire space of
goods, G. That is, when Pi ∩ Pj = ∅ for Pi 6= Pj and ∪P∈PP = G. Any
partition of the set of commodities divides the commodities into distinct
commodity groups.

Example 3.2.8: Partitions The set {1} has only one partition,
{
{1}

}
.

The set {1, 2} can be partitioned in two ways. Each singleton has its
own set in the partition, P =

{
{1}, {2}

}
, or we can consider the partition

consisting only of the set {1, 2} itself. This type of partition is always
possible and is called the trivial partition.

When there are three elements, {1, 2, 3}, the set can be partitioned in
5 ways. There is the trivial partition {1, 2, 3}, the partition of singletons{
{1}, {2}, {3}

}
, and the three partitions into a singleton and a doubleton:{

{1}, {2, 3}
}

,
{
{2}, {1, 3}

}
, and

{
{3}, {1, 2}

}
.

The number of ways a set of size n may be partitioned is the Bell
number Bn.17

The Bell numbers obey the recursion

Bn+1 =
n∑

k=0

(n

k

)

Bk

where
(n

k

)

= n!/(n − k)!k! are the binomial coefficients and B0 = 1.

Starting at n = 0, the first several Bell numbers are 1, 1, 2, 5, 15, 203,
877, 4140, . . . . ◭

17 Although the Bell numbers (Bell, 1938) are named after Scottish-American math-
metician and science fiction writer Eric Temple Bell (1883–1960), he did not invent
them. The earliest investigation of the number of partitions appears to date to medieval
Japan. The first formula for them seems to be that of Dobiński in 1877.

Bell is also known for his work on generating functions. Today, he’s best remembered
for the book Men of Mathematics and his science fiction, both under his own name and
as John Taine.
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3.2.15 Group Additive Separability

Partitions allow us to define group separability. Let X be R
m
+ or R

m
++.

We say that u : X → R is group additive separable or additive separable
relative to the commodity partition P if there are subutility functions uP
for every commodity group P ∈ P where uP : RP+ → R or uP : RP++ → R,
respectively, and u is the sum of subutility functions

u(x) =
∑

P∈P
uP(xP). (3.2.5)

Thus u(x) = x3 + (x1x2x4)1/2 is additively separable with respect to the
partition

{
{3}, {1, 2, 4}

}
.
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3.2.16 Characterizing Group Additive Separable Utility I

We can generalize Theorem 3.2.1 to encompass utility functions that are
additively separable relative to a partition P as follows.

Theorem 3.2.9. Let X be either Rm+ or Rm++ and suppose u : X → R is
a C2 utility function that is additively separable relative to a commodity
partition P, so u(x) =

∑
P∈P uP(xP).

1. Then ∂2u
/

∂xi∂xj = 0 whenever i and j are members of different
commodity groups.

2. Suppose further that there are goods in at least two commodity
groups with ∂uP/∂xi > 0. If ϕ is a C2 monotonic increasing trans-
formation such that v = ϕ ◦ u is also additive separable relative to
P, then ϕ = au+ b for some a > 0.

Proof. Mimic the proof of Theorem 3.2.1. �
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3.2.17 Characterizing Group Additive Separable Utility II

We also have a version of Theorem 3.2.3.

Theorem 3.2.10. Let X be either Rm+ or Rm++ and suppose u : X → R is
C2 and there is a commodity partition P of the list of goods {1, . . . ,m}

with ∂
2u

∂xj ∂xi
= 0 whenever i and j are in different elements of the partition

P. Then there are uP : RP+ → R such that u(x) =
∑

P∈P uP(xP).

Proof. Omitted, see manuscript. �

Theorem 3.2.10 does a nice job of characterizing C2 utility functions
that are group additive separable. We saw in Example 3.2.5 that this
characterization can sometimes be used to find an additive separable
representation of a given utility function, as we did with Cobb-Douglas.
What the theorem does not do is tell whether a given utility function (or
even preference order) has an additive separable representation. One
clue that this theorem is not enough is that the criterion for additive
separability (cross-partials are zero) is not invariant under monotonic
transformations.
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3.3 Induced Orders on Commodity Groups 01/17/23

We’ve studied additive separable preferences over both individual
goods and commodity groups. Although we have characterized addi-
tive separable utility, we still lack a way of characterizing utility that is
a monotonic transformation of additive separable utility. This section is
a step toward that goal. However, we will not reach that goal in this
section.

This section focuses on induced orders, where preferences over one
commodity group are independent of consumption of other goods. It
culminates in the concept of Sono separability and conditions that allow
us to find subutility functions. However, those subutilities need not be
related in an additive way.
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3.3.1 Additive Separability and Commodity Groups

To understand how a preference order might be separable, we turn to
additive separable utility to develop some intuition. One important fact
about additive separable utility is that it unambiguously defines utility
over each commodity group. The following example shows how this
works.

Example 3.3.1: Separability and Commodity Groups If u is an ad-
ditive separable utility function on R

m
+ , and A is a commodity group.

There is a natural way to define preferences on R
A
+. Simply restrict the

additive form to R
A. If u(x) =

∑
i ui(xi), we can do this by defining

uA(xA) =
∑

i∈A
ui(xi).

Then u(x) = uA(xA) +u∼A(x∼A). Now suppose that for some y∼A ∈ R
∼A,

u(x′A,y∼A) = uA(x′A) + u∼A(y∼A)

≥ uA(xA) + u∼A(y∼A)

= u(xA,y∼A).

Then uA(x′A) ≥ uA(xA). Conversely, if uA(x′A) ≥ uA(xA), we have
u(x′A,y∼A) ≥ u(xA,y∼A) for every y∼A ∈ R

∼A
+ .

This means the preference order given by the derived utility functionuA
is the same as we would by defining x′A %A xA if and only if (x′A,y∼A) %
(xA,y∼A) for all y∼A ∈ R

∼A
+ . This definition of %A is equivalent to using

the utility function uA. ◭
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3.3.2 Ordinal Utility and Commodity Groups

In fact, the idea of Example 3.3.1 applies to any utility function that is
equivalent to an additive separable utility function. One way to imple-
ment it is to fix the consumption of goods that are not in the commodity
group A. That is, we fix consumption of goods in ∼ A. Proposition
3.3.2 shows us that the resulting order on R

A
+ is independent of the

consumption levels of goods outside group A.

Proposition 3.3.2. Let A be a commodity group. If u : Rm+ → R is equiv-
alent to an additive separable utility function, then uA(xA) = u(xA, x̄∼A)
defines a preference order on R

A
+ that is independent of the choice of x̄.

Proof. We can write u = φ ◦ v where v is additive separable and φ is
increasing. Now

uA(xA) = φ
(

v(xA, x̄∼A)
)

= φ

(

∑

i∈A
vi(xi) +

∑

i/∈A
vi(x̄i)

)

.

Since φ is increasing, this is equivalent to
∑

i∈A vi(xi) +
∑

i/∈A vi(x̄i). The
second term is constant, so the preference order defined by uA on R

A
+ is

equivalent to
∑

i∈A vi(xi), which is independent of x̄. �
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3.3.3 Cardinal and Ordinal Properties

Before delving into the implications of this idea, we first stop to see how
it is connected to the characterization of additive separable utility in
Theorems 3.2.1 and 3.2.3. Those theorems involved the condition that
∂2u

∂xj ∂xi
= 0 for every i, j with i 6= j. Equivalently, the marginal utility of

each good is independent of consumption of any other good.
This may seem a somewhat unsatisfactory condition to build our intu-

ition on because it depends on the utility representation, not the under-
lying preference order. Marginal utility is just not an ordinal property.
However, the closely related marginal rate of substitution is ordinal.

Proposition 3.2.4 showed that the independence of marginal utility
immediately implies that the marginal rate of substitution between i and
j, MRSij, depends only on xi and xj. This is true not only of additive
separable utility, but of any increasing transformation of an additive sep-
arable utility function. It is an ordinal property, and an eminently suitable
foundation for intuition.

Since the i-j indifference curves of such utility functions have the same
slope regardless of the consumption of other goods, the i-j indifference
map is unaffected by the consumption of other goods. We can define
utility in i-j space independently of consumption of other goods by
uij(xi, xj) = ui(xi) + uj(xj). This is not only true of i and j, but applies to
any commodity group.
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3.3.4 Induced Orders

So if we have an arbitrary commodity group A, separability allows us to
define preferences over goods inAwithout regard to the consumption of
goods not in A. This is the key to an ordinal definition of separability.18

One requirement is that it define a preference order on every commodity
group A. We can extend this method of defining utility on a commodity
group A to more general preferences.

Induced Order. Let A ⊂ {1, . . . ,m} be any commodity group. A
preference order % on X ⊂ R

m
+ induces an order on group A if

(xA, x∼A) % (yA, x∼A) implies (xA, z∼A) % (yA, z∼A) for all z ∈ X. We
denote this preference order by %A.

Saying that we can define an induced order means that we can rank
xA and yA unambiguously. In that case we write xA %A yA. When %

induces an order on commodity groupA, it means that % unambiguously
defines preferences over commodity bundles in R

A.19 Proposition 3.3.2
showed that when preferences are defined by an additive separable
utility function (or equivalent utility function), they induce an order on
every commodity group.

18 Sono (1943) seems to have been the first to realize this.
19 In Sono’s (1943) definition, a group A is separable from commodity j if the con-
sumption of j does not affect the ranking of bundles of goods from A. That is, A is
separable from j in Sono’s sense if there is an induced order %A on X

A.
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3.3.5 Additive Separability and Induced Orders

There is also a version of Proposition 3.3.2 for group additive separable
utility.

Theorem 3.3.3. Let P be a commodity partition and A a union of com-
modity groups inP. Suppose u : Rm+ → R is equivalent to a utility function
that is additive separable relative to P. Then uA(xA) = u(xA, x̄∼A) defines
a preference order on R

A
+ that is independent of the choice of x̄.

Proof. We can write u = φ ◦ v where v is additive separable and φ is
increasing. Now for any commodity group in P, either P is one of the
commodity groups that make up A, in which case P ⊂ A or P is not one
of those groups, when P ∩A = ∅. This lets us write

uA(xA) = φ
(

v(xA, x̄∼A)
)

= φ

(

∑

P⊂A
vP(xP) +

∑

P∩A=∅
vP(x̄P)

)

.

Since φ is increasing, this is equivalent to
∑

P⊂A vP(xP) +
∑

P∩A=∅ vP(x̄P).
The second term is constant, so the preference order defined by uA on
R
A
+ is equivalent to

∑
P⊂A vP(xP), which is independent of x̄. �
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3.3.6 Monotonicity and Induced Orders

Additive separable utility is not the only way to induce an order. Other
types of preference orders can also induce orders on particular com-
modity groups. One of the simplest types of induced orders occurs
when preferences are monotonic.

Proposition 3.3.4. Suppose % is weakly monotonic in xi. Define the
commodity group P = {i}. Then % induces an order on P.

Proof. Now (xP, x∼P) % (yP, x∼P) if and only if xi ≥ yi. But this holds
if and only if (xP, z∼P) % (yP, z∼P) for any z, thus % induces an order on
P = {i}. �

Monotonicity is not enough to guarantee additive separability.
Example 3.3.5: Monotonic but not Additive Separable Utility Con-

sider the utility function u(x) = (x1 + x2)(x2 + x3). Since du ≫ 0 on
R

3
++, this function is strongly monotonic there. As a result, it induces an

order on the singleton commodity groups {1}, {2}, and {3}.
This utility function is not additive separable because each marginal rate

of substitution depends on all three variables, not just the two involved
variables. This means it cannot even be transformed into an additive
separable form (Problem 3.3.1). ◭
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3.3.7 Utility with No Non-trivial Induced Orders I

When u is not monotonic, it need not induce an order on any commodity
group other than {1, . . . ,m}.

Example 3.3.6: Utility without Induced Orders To see that utility
need not induce orders on anything other than the entire consumption
set, consider the utility function u(x1, x2) = (x1−x2)2. It does not induce
an order on either singleton, {1} or {2}.

This is based on the observation that u(2, 0) = 4, u(0, 0) = 0, u(2, 2) =
0, and u(0, 2) = 4. It follows that although (2, 0) ≻ (0, 0), changing the
amount of good two to 2 reverses the relation: (2, 2) ≺ (0, 2). Similarly,
although (0, 2) ≻ (0, 0), changing the amount of good one reverses the
relation: (2, 0) ≺ (2, 2). Thus u does not induce an order on either
commodity group {1} or {2}.

Figures 3.3.7 and 3.3.8 illustrate this.

bu = 0 b u = 4

bu = 4 b u = 0

Figure 3.3.7: Inducing an order on {1} would mean that either x1 = 1
is always better than x1 = 0 or always worse, regardless of how much of
good two we have. But the preference order reverses as we move from the
horizontal axis to the dotted horizontal line.

A similar thing happens with good two, as we see by comparing preferences
along the vertical axis and the dotted vertical line.
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3.3.8 Utility with No Non-trivial Induced Orders II

4 1 0 1 4

Figure 3.3.8: The diagonal lines are the indifference curves for u = 0, 1, 4.
For u > 0, the indifference curve consists of two parallel lines. As we move
right along the dotted line, utility decreases until we hit the 45◦ line, and
then increases. It defines a different preference order on good one for every
value of x2. These preferences do not induce any fixed order on good one.
Considering vertical lines shows the same thing for good two.

◭
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3.3.9 Induced Orders and MRS

Proposition 3.3.4 and Example 3.3.5 drive home the point that merely
inducing an order on some commodity group, or even every singleton,
is insufficient for additive separability. It is necessary, but insufficient. In
fact, Theorem 3.2.1 shows that additive separability requires that orders
are induced on every commodity group. We will return to this idea later,
after we explore induced orders a bit more.

When dealing with larger groups of goods, utility functions of the form

u(x) = ψ
(

φ(xA), x∼A
)

(3.3.6)

induce an order on A when ψ is strictly increasing. Here φ is a subutility
function on R

A
+ and it represents the induced order on R

A
+. If A contains

at least two elements andψ andφ are both C2, we can consider MRSij =
(∂φ/∂xi)

/

(∂φ/∂xj) for i, j ∈ A. In that case

∂

∂xk

(

MRSij
)

= 0 for every k /∈ A. (3.3.7)

Ever since Sono (1943), equation 3.3.7 has been used to define a type
of separability. Nonetheless, we consider Sono separability to be a case
of an induced order, and reserve the term “separable” for cases where
goods in A and the goods not in A are treated on an equal footing—
where orders are induced on both A and its complement.

An example of this type of separability is φ(x1, x2) = (1 + x2)(x1 + x2)
and u(x1, x2, x3) = −e−x3 + x3φ(x1, x2). When considered on R

3
++,

this function induces an order on (x1, x2). Verification that u is not
equivalent to an additive separable utility function is straightforward and
left as Exercise 3.3.5. This example shows that we can have a limited
type of separability without attaining additive separability.
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3.3.10* Leontief’s Subutility Theorem

We are now ready to state Leontief’s Subutility Theorem.

Subutility Theorem (Leontief). Suppose u ∈ C2 is strictly increasing
on the strictly positive orthant R

m
++ and let A be a commodity group

where u obeys ∂

∂xk
(MRSij) = 0 for every i, j ∈ A and every k /∈ A. Given

x0 ∈ R
m
++, there are C2 functionsψ andφ such thatu(x) = ψ

(

φ(xA), x∼A
)

on a neighborhood of x0. Moreover, ψ is strictly increasing in (φ, x∼A).

One weakness of Leontief’s Separability Theorem is that the represen-
tation is local, not global. In general, it is a non-trivial problem to extend
the representation to all of Rm+ .
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3.4 Separable Preference Orders

Why do we care about separability of preferences as well as of utility?
One answer is that by studying preferences directly, by breaking sep-
arability loose from utility, we clarify the meaning and significance of
separability.

The problem with using utility as the basis for definition is that con-
ditions imposed directly on utility may result in unknown assumptions
concerning preferences themselves. For this reason, many economic
theorists prefer to impose hypotheses concerning preferences directly on
the preference ordering. When dealing directly with preferences, the
extra complication of a plethora of equivalent forms does not arise. The
ideal situation is to have theorems relating properties of preferences and
of utility functions. That is what we do for separability in this section.

When can a utility function be transformed into an additive separable
form? When can preferences be represented by such a function? To fully
answer these questions, we have to consider separability of preference
orders rather than separability of utility. The resulting framework applies
not just to preferences with additive separable representations, but also
allows us to consider other types of preferences, such as those with a
quasi-linear representation.
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3.4.1 Weak, Strong, and Complete Separability

Now suppose we have a bunch of commodity groups. Can we write
utility in terms of subutilities for each group?

To answer this, we introduce three distinct types of separability for pref-
erence orders. Whether a given preference order will have a separable
utility representation will depend on the amount of separability it has.

Types of Separability. Let P be a non-trivial partition of goods G =
{1, . . . ,m} into commodity groups. If % is a preference order on either
R
m
+ or Rm++, we say % is weakly separable relative to P if % induces an

order on each commodity group P ∈ P. Weakly separable preferences
are sometimes referred to as separable.

A preference order % is strongly separable relative to P if it induces an
order not only on each commodity group in P, but also on each union
of commodity groups in P.

Finally, we say % is completely separable if it is strongly separable
relative to the partition of singletons, Ps =

{
{1}, {2}, . . . , {m}

}
.

Unlike Sono’s separability condition from equation 3.3.7, weak, strong,
and complete separability treat all commodity groups symmetrically.

Complete separability is equivalent to requiring that % induce an order
on every partition, or that it be both weakly and strongly separable on
every partition of {1, . . . ,m}, that it induce an order on every possible
commodity group. As we noted before, Proposition 3.3.2 shows that any
additive separable utility induces an order on every commodity group.
In other words, every additive separable utility defines a completely
separable preference order.

Similarly, Theorem 3.3.3 implies that any group additive separable
utility is strongly separable relative to its partition.
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3.4.2 Separability with Two Goods

When there are only two goods the different types of separability are not
distinct. There is only one non-trivial partition, the partition of singletons,
Ps =

{
{1}, {2}

}
. Weak separability and strong separability are the same

because the only union is set of all goods, where the original preference
order is the induced order. When there are only two goods, weak and
strong separability on Ps are the same as complete separability. We need
at least three goods for the different types of separability to be distinct.

The same sort of problem can occur if there are three goods, but one
of them does not affect utility. In that case, its presence or absence will
not affect the ability to induce an order. There are only two relevant
goods. Once again, the definitions all coincide.

Rather than requiring that all commodities affect preference, it is
enough that there be a sufficient variety of goods that affect prefer-
ences. Consider a commodity group A. If there are xA, yA and z∼A
with (xA, z∼A) 6∼ (yA, z∼A), we say group A is essential for %. In other
words, commodity group A is essential if there are consumption bundles
where changes in consumption of the goods in A can affect preference.
Inessential commodity groups will not show up in any additive separable
representation. We will sometimes require that at least three commodity
groups are essential.

The case where there are only two essential commodity groups has to
be handled separately. We will deal with this later when we consider the
two good case, and introduce another criterion for separability there.
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3.4.3 Additivity and Complete Separability

To get a little more feel for the definitions, ifu is a group additive separable
utility function relative to a partition P, as in Equation 3.2.5, then u
is strongly separable relative to P. This means that ordinary additive
separable utility is always completely separable, as shown in the following
proposition.

Proposition 3.4.1. Let X be either Rm+ or Rm++ and suppose u : X → R is
equivalent to an additive separable utility function. Then u is completely
separable.

Proof. Recall the partition of singletons: Ps =
{
{1}, {2}, . . . , {m}

}
. By

Proposition 3.3.2, u induces an order on every commodity group. Thus it
not only induces an order on every singleton (is weakly separable relative
to Ps), but it also induces an order on every union of singletons, and
hence on every commodity group. Then u is strongly separable on Ps
and so is completely separable. �

Theorem 3.3.3 tells us that group additive utility is strongly separable
relative to its defining partition. As in the example below, such utility
functions need not be strongly separable relative to finer partitions.

Example 3.4.2: Group Additive Utility and Separability On R
6
+, the

utility function u(x) = u1(x1, x2, x3) + u4(x4, x5, x6) is both weakly and
strongly separable relative to the partition

{
{1, 2, 3}, {4, 5, 6}

}
. There are

many functions u1 and u4, where it is not completely separable. One
such case is when u1(x1, x2, x3) = x1x3 + x2x3, which has MRS13 =
x3/(x1 + x2). Since this marginal rate of substitution depends on x2, u is
not completely separable. ◭
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3.4.4 Monotonicity and Weak Separability

One easy result is that monotonic preferences are always weakly separa-
ble with respect the partition of singletons.20

Proposition 3.4.3. Suppose % is weakly monotonic. Then % is weakly
separable relative to the partition of singletons.

Proof. In this case Proposition 3.3.4 tells us that u induces an order on
each P ∈ Ps. Therefore u is weakly separable relative to Ps. �

Combining Proposition 3.4.3 and Example 3.3.5 tells us that weak
separability is insufficient to yield an additive separable representation.
The point is that any weakly monotonic utility is weakly separable, but
Example 3.3.5 shows that even strongly monotonic utility need not be
equivalent to additive separable utility.

Although monotonically increasing utility is sufficient for weak separa-
bility relative to the partition of singletons Ps, it is not necessary. Any
monotonically decreasing utility function also generates a weakly sep-
arable preference order. Example 3.4.4 shows there are also weakly
separable preferences that are not monotonic.

Example 3.4.4: Weakly Separable, Non-Monotonic Preferences On
R

2
+, the utility function u(x) = [1 + (x1 −2)2](x2 + 1) is separable relative

to the partition of singletons Ps =
{
{1}, {2}

}
, although is not monotonic.

To see that u is separable, note that for any x2, (x1, x2) % (y1, x2) if
and only if (x1 − 2)2 ≥ (y1 − 2)2. This condition does not depend on
x2, u defines a preference order on P = {1}. Since u is increasing in x2,
Proposition 3.3.4 implies it also defines a preference order on P = {2}.
It follows that u is separable on Ps. ◭

20 If preferences are only weakly monotonic, some goods may not be essential.



3. HOMOTHETICITY AND SEPARABILITY 83

3.4.5 Weak Separability and the MRS

Just as additive separability puts certain restrictions on the marginal rates
of substitution (that MRSij depends only on xi and xj), weak separability
relative to a partition also places restrictions on the marginal rates of
substitution.

The following proposition is established in Problem 3.4.8.

Proposition 3.4.5. Let X be either Rm+ or Rm++ and suppose u : X → R

is a differentiable utility function with du ≫ 0. Let P be a partition of
goods.

1. Ifu is weakly separable relative to the partition P and the commodity
group P ∈ P contains at least two distinct goods i and j, then the
marginal rate of substitution MRSij is independent of xk for each
k /∈ P.

2. If u is strongly separable relative to the partition P, then for every
P1 6= P2 ∈ P goods i ∈ P1 and j ∈ P2, the marginal rate of
substitution MRSij is independent of xk for every k /∈ P1 ∪ P2.

The assumption that du ≫ 0 ensures that MRSij is defined for all
goods.

Proposition 3.4.5 has consequences for both weakly and strongly sep-
arable utility functions. For u ∈ C2 that is weakly separable with respect
to a partition P, this implies that for every P ∈ P containing at least two
goods,

∂

∂xk
(MRSij) = 0 (3.4.1)

for all distinct i, j ∈ P and k /∈ P. If instead u is strongly separable over
P, it implies that equation 3.4.9 holds for every i ∈ P1, j ∈ P2, and
k /∈ (P1 ∪ P2).
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3.4.6 Utility that is Weakly but not Strongly Separable

We can sometimes use Proposition 3.4.5 to show that weakly separa-
ble utility functions need not be strongly separable, as in the following
example.

Example 3.4.6: Weakly but not Strongly Separable Utility This ex-
ample shows that requiring an induced order on every collection of
commodity groups (strong separability) is stronger than merely having an
induced order on each commodity group by itself. Consider the utility
function u(x1, x2, x3) = (x1 + x1x2)x3 + x2

3 and use the partition of sin-
gletons Ps = {{1}, {2}, {3}}. The utility function is separable relative to the
partition Ps, as are all increasing utility functions (see Proposition 3.4.3).
However, it is not strongly separable on Ps.

By Proposition 3.4.5 with P, if uwere strongly separable, MRS13 would
not depend on x2. A simple calculation shows that MRS13 = x3(1 +
x2)/(x1 + x1x2 + 2x3). As this depends on x2 (e.g., MRS13(1, 1, 1) = 1/2
while MRS13(1, 2, 1) = 3/5), u cannot be strongly separable. In this case,
strong separability and complete separability coincide.

It is also possible to show this directly from the definitions. By trading
away from (1, 1, 1) and (1, 2, 1) at the marginal rates of substitution, we
can show that preferences cannot be defined on the pair of commodity
groups {{1}, {3}}. Consider u(0, 1, 3/2) = 9/4 > u(2, 1, 2/5) = 44/25
and u(0, 2, 3/2) = 9/4 < u(2, 2, 2/5) = 64/25. The amount of good
2 consumed affects the ranking of (x1, x3) = (0, 3/2) and (y1, y3) =
(2, 2/5).

Note that the xk could be replaced by subutilities to get an example
with multiple goods in each commodity group. ◭
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3.4.7 The Smooth Separability Theorem

Converses to Proposition 3.4.5 are due to Goldman and Uzawa (1964)
and Gorman (1968), showing that preferences with appropriately inde-
pendent marginal rates of substitution have an additive separable repre-
sentation. Gorman’s version of the theorem is a bit more general. It is
based on earlier work by Leontief (1947a, b). This is the version we state.
The proof below is that of Goldman and Uzawa, which is a bit simpler,
but requires that utility be thrice continuously differentiable.

Smooth Separability Theorem. Let X be either Rm+ or Rm++ and suppose
u ∈ C2 with du ≫ 0 on X . Let P be a partition of commodities with
at least 3 commodity groups. If for every pair P, P′ of distinct commodity
groups in P, ∂

∂xk

(

MRSij
)

= 0 for every i ∈ P, j ∈ P′, and k /∈ (P ∪ P′),
then there is an strictly increasing C2 function F and strictly increasing C2

functions vP on X with

u(x) = F

(

∑

P∈P
vP(xP)

)

.
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3.4.8 The Weak Separability Theorem

The first results characterizing weakly separable functions were obtained
by Sono (1943) and Leontief (1947a, b). Sono focused on the case
of two commodity groups, while Leontief considered the general case.
As Sono found, an additional property was needed for the case of two
commodity groups. Goldman and Uzawa (1964) provided a complete
characterization of weak separability for well-behaved smooth functions
with three or more goods. In general, there must be at least three essential
commodities for this to work. We assume du≫ 0, which enures that all
commodities are essential and all marginal rates of substitution exist.
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3.4.9 Debreu’s Separability Theorem

For smooth utility functions, we now have a characterization of weak
and strong separability, provided there are sufficient essential goods. In
particular, additive separable utility functions correspond to completely
separable utility. But what if we start with a completely separable prefer-
ence order? We may not have a utility function, much less a smooth one.
Even in this case we can still get an additive separable representation.
The key result is a deep theorem of Debreu which we state without proof
(see Debreu, 1960 or Fishburn, 1970, Chapter 5).

Separability Theorem (Debreu). Suppose % is a continuous preference
order on R

m
+ that is strongly separable relative to a partition P. If at least

three of the commodity groups P are essential, then there are continuous
functions uP for each P ∈ P such that u(x) =

∑
P∈P uP(xP) represents %.

Among other things, Debreu’s Separability Theorem allows us to char-
acterize all preferences that can be represented by an additive separable
utility function. Like the Smooth Separability Theorem, Debreu’s Sepa-
rability Theorem still requires at least 3 essential goods.

Corollary 3.4.7. Suppose at least 3 goods are essential. A preference
order % on R

m
+ is continuous and completely separable if and only if there

is a continuous additive separable u that represents %.

Proof. Note that each good is a commodity group in this case. The only
if part is an immediate consequence of Debreu’s Separability Theorem
and the if part follows easily using the separable representation. �
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3.4.10 The Importance of at least Three Commodity Groups

In both the Smooth Separability Theorem and Debreu’s Separability The-
orem, it is important that there are at least three essential commodity
groups. Moreover, even the Weak Separability Theorem requires at least
three essential goods. The following example shows that when there are
only two essential commodity groups, it may not be possible to find an
additive separable representation even of strongly separable utility.

Example 3.4.8: Strongly Separable Preferences without Separable
Representation Let utility on R

2
+ be defined by u(x1, x2) = x1+x2 ln(2+

x1). Since u is strictly increasing in each variable, it is weakly separable
relative to the partition

{
{1}, {2}

}
. The only union of commodity groups

is {1, 2}, so u is also strongly separable. This means it is completely
separable. However, there are at most two commodity groups, and the
Smooth Separability Theorem does not apply.

This utility function cannot be represented in additive separable form.
To see that, suppose there is a smooth transformationϕ that converts this
to an additive separable form v = ϕ ◦ u Then ∂v/∂xℓ = ϕ′∂u/∂xℓ and

∂2v

∂x1 ∂x2
= ϕ′ ∂2u

∂x1 ∂x2
+ϕ′′ ∂u

∂x1

∂u

∂x2
.

As this must equal zero to have an additive separable representation, we
find

1

2 + x1
ϕ′ +ϕ′′2 + x1 + x2

2 + x1
ln(2 + x1) = 0.

Substituting ψ = ϕ′ and clearing the denominator yields

ψ+ ψ′(2 + x1 + x2) ln(2 + x1) = 0. (3.4.14)

Now both ψ and ψ′ depend only on u = x1 + x2 ln(2 + x1). Equation
3.4.14 must hold as we vary x while holding u(x) constant.

Example dontinues . . .
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3.4.11 Rest of Example 3.4.8

We are free to vary (2 + x1 + x2) ln(2 + x1) while holding u fixed. To
hold u constant, we set x2 = (u − x1)/ ln(2 + x1) when x1 > 0. Then
(2 + x1 + x2) ln(2 + x1) = (2 + x1) ln(2 + x1) + u − x1, which clearly
varies as x1 varies. Consider equation 3.4.14 at the same value of u
with x1 = 1 and x1 = 2. Subtracting the two equations yields ψ′ = 0,
implying ψ = 0, which contradicts the assumption that ϕ is increasing.
It follows that there is no transformation of u into an additive separable
form. ◭
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3.4.12 Separability with Two Commodity Groups

The forgoing makes it pretty clear that there are important differences in
separability with three or more commodity groups and separability with
two commodity groups. We saw a hint of that earlier when we noticed
that weak and strong separability coincide on R

2
+. We will focus on the

case of two goods rather than considering all cases with two commodity
groups.

When we have only two goods, the usual marginal rate of substitution
condition, that MRS12 depend only on goods one and two, has become
meaningless. All utility functions satisfy that, regardless of whether they
are additive separable. Separability of preferences is also too weak. All
increasing utility functions are strongly separable relative to the partition
of singletons, P =

{
{1}, {2}

}
. This type of separability is irrelevant as far

as additive separability is concerned.
Additive separable preferences on R

2
+ must have some extra property.

But what is it? Start with an additive separable utility function u on R
2
+.

We can write u(x, y) = u1(x) +u2(y). Suppose u(x1, y1) ≥ u(x2, y2) and
u(x2, y3) ≥ u(x3, y1). We can rewrite these as

u1(x1) + u2(y1) ≥ u1(x2) + u2(y2)

u1(x2) + u2(y3) ≥ u1(x3) + u2(y1).

Adding, we obtain

u1(x1) + u2(y1) + u1(x2)+u2(y3) ≥
u1(x2) + u2(y2) + u1(x3) + u2(y1).

Cancelling the terms that are equal (the red and green terms) yields

u1(x1) + u2(y3) ≥ u1(x3) + u2(y2). (3.4.2)
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3.4.13 The Double Cancellation Property

Equation (3.4.15) tells us

u(x1, y3) = u(x3, y2)

whenever u(x1, y1) ≥ u(x2, y2) and u(x2, y3) ≥ u(x3, y1).
In terms of preference, whenever % is equivalent to an additive seple

utility function on R
2
+, then whenever (x1, y1) % (x2, y2) and (x2, y3) %

(x3, y1), we also have (x1, y3) % (x3, y2).
With this in mind, the double cancellation condition holds for % on

R
2
+ if whenever (x1, y1) % (x2, y2) and (x2, y3) % (x3, y1), we also have

(x1, y3) % (x3, y2).
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3.4.14 Double Cancellation Theorem

Theorem 3.4.9. Let X = R
2
+ or R2

++ and suppose % is continuous on X.
Then % obeys the double cancellation condition if and only if % has an
additive separable representation.

Proof. We already showed above that additive separable preferences
on X obey the double cancellation condition.

If neither good is essential, u1 = u2 = 0. Now let u represent %.
If only one good is essential, then either u1 or u2 = u, with the other
function being zero. That leaves the case where both goods are essential.

Theorem 1 of Debreu (1960) can be adapted to prove this (see The-
orem 5.4 of Fishburn, 1970, or Wang, 2015). All that is necessary
is to remove the symmetry part of the Debreu’s Assumption 3, when
it becomes the double cancellation condition. Without symmetry, the
transformations of the two axes are no longer identical, allowing u1 6= u2

(unlike Debreu’s Theorem 1).21 �

Double Cancellation with Commodity Groups. The double cancellation
condition can also be written in terms of commodity groups. Fishburn
(1970, Theorem 5.4) shows in considerable, but not complete, detail
how the proof of Debreu’s Separability Theorem applies in that case.
Fishburn also considers the multi-group case in the same framework
(Fishburn, Theorem 5.5).

21 The key to Debreu’s proof draws on the theory of web geometry as developed by
Thomsen (1927), Blaschke (1928), and Blaschke and Bol (1938).
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3.4.15 Sono Independence

Sono (1943) had already realized that something more than separability
was needed when goods are partitioned into two commodity groups, a
condition he called “independence”.

Sono Independence. A commodity group P1 is Sono independent of com-
modity group P2 if there exist functions ψji(xP1

) such that

∂

∂xi

(

ln MRSkj
)

=
∂

∂xi

(

ln MRSℓj
)

= ψji(xP1
)

for all i, j ∈ P1 and k, ℓ ∈ P2.

Blackorby, Primot, and Russell (1978) proved the following theorem,
which I have recast into our framework.

Theorem 3.4.10. Let X be either Rm+ or Rm++ and suppose that a utility
function u is C2 on X with du≫ 0 and that commodities are partitioned
into two groups, P = {P1, P2}. If P1 is Sono independent of P2 and
∂ MRSkℓ /∂xj = 0 for all j ∈ P1 and k, ℓ ∈ P2, then u is equivalent to a
group additive separable utility relative to P.
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3.4.16 Quasi-Linear Utility

Theorem 3.4.10 is the type of theorem we need for dealing with quasi-
linear utility. Setting Aj =∼{j} = {1, . . . ,m} \ {j}, we can write utility as

u(x) = axj +ϕ(xAj
) where ϕ : R

Aj

+ → R.
It is clear that these preferences are separable relative to P =

{
{j}, Aj

}
,

but they have an additional property. If we compute the marginal rate
of substitution MRSℓj for ℓ 6= j, we find it is independent of xj. But then

∂ ln MRSkj
∂xj

=
∂ ln MRSℓj

∂xj

for all k, ℓ ∈ Aj. It follows that {j} is Sono independent of Aj.

Quasi-Linear Representation Theorem. Let X be either Rm+ or Rm++ and
suppose that a utility function u is C2 on X with du ≫ 0. Then MRSℓk
is independent of xk for all ℓ 6= k. if and only if u has an equivalent
representation in quasi-linear form.

Proof. Part I (only if): We showed above that if u is quasi-linear in
xj, it then {j} is Sono independent of Aj. It also obeys the separability
condition ∂ MRSkℓ /∂xj = 0.

Part II (if): Under these assumptions, Theorem 3.4.10 yields an additive
representation of u, vj(xj) + vAj

(xAj
).

The marginal rate of substitution MRSℓk = (∂vAj
/∂xℓ)/v′j(xj) is inde-

pendent of xj. Thus, its xj-derivative is zero. That means

0 =
1

v′j

∂2vAj

∂xj ∂xℓ
−
v′′j

(v′j)
2
.

Since xj is not part of xAj
, the first term is zero, implying v′′j = 0. It

follows that vj(xj) = axj + b for some a and b, which is the required
quasi-linear form. �
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3.5 Bergson’s Theorem

If we combine additive separability and homotheticity, we obtain further
restrictions on the form of the utility function. This was first investigated
by Bergson (1936), who consider the additive separable case where the
subutilities must either have the Bergson form or the Bernoulii (1738)
form.

Rader (1981) extended the result to allow for utility that was not
smooth, and considered group additive separable preferences. In or-
der to include the non-differentiable cases, Rader restricted his attention
to monotonic and quasi-concave utility. We present a version of the
theorem with monotonicity, but without requiring quasi-concavity, at the
cost of assuming utility is C2.

The following form of the theorem requires smoothness, as in Berg-
son (1936), but does not require concavity and does allow for multiple
variables, as in Rader (1981).
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3.6 Statement of Bergson’s Theorem

Separability Theorem (Bergson). Suppose u is a C2 utility function on
R
m
++ with du≫ 0. If u is both homothetic and group additive separable

relative to a partition P with at least two commodity groups, then u has
one of the following two forms:

1. (Bergson) For some γ 6= 0, there are constants c and bP and func-
tions vP, homogeneous of degree one on R

P
++ and bP obeying

bPγdvP ≫ 0 with

u(x) = c+
∑

P∈P
bP
(

vP(xP)
)γ
.

2. (Modified Bernoulli) There are constants bP obeying bP dvP ≥ 0,
and functions φP and vP, homogeneous of degree zero and one on
R
P
++, respectively, with vP > 0, such that

u(x) =
∑

P∈P
φP(xP) +

∑

P∈P
bP ln vP(xP).
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3.6.1 Proof of Bergson’s Theorem I

Proof. Group additive separability tells us that u(x) =
∑

P∈P uP(xP) for
some functions uP. These functions must be C2 since u ∈ C2. Take k in
commodity group P and ℓ in P′ 6= P. Because du≫ 0, we can form the
marginal rate of substitution,

MRSkℓ =

(

∂uP/∂xk
)

(xP)
(

∂uP′/∂xℓ
)

(xP′)
.

Let ϕk denote the marginal utility ϕk(xP) =
(

∂uP/∂xk
)

(xP). Then
MRSkℓ = ϕk(xP)/ϕℓ(xP′). By the homotheticity of u and Theorem 3.1.2,
MRSkℓ is homogeneous of degree zero, yielding

ϕk(txP)

ϕℓ(txP′)
=
ϕk(xP)

ϕℓ(xP′)
.

for all t > 0. Now use the chain rule to take the t-derivative of both
sides and rearrange, to obtain

ϕℓ(txP′)
[

Dxϕk(txP)
]

xP = ϕk(txP)
[

Dxϕℓ(txP′)
]

xP′.

Then set t = 1 and collect the P terms on the left and P′ terms on the
right to find

[

Dxϕk(xP)
]

xP

ϕk(xP)
=

[

Dxϕℓ(xP′)
]

xP′

ϕℓ(xP′)
(3.5.16)

Proof concludes on next page . . .
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3.6.2 Proof of Bergson’s Theorem II

Rest of Proof. The left side of equation 3.5.16 depends only on xP
and the right side depends only on xP′. That means that both must be
constant. We call the common value β. Notice that since P and P′ were
arbitrary, the same constant β applies to all such ratios. We then write

β =

[

Dxϕk(xP)
]

xP

ϕk(xP)
=

[

Dxϕℓ(xP′)
]

xP′

ϕℓ(xP′)

But then
βϕk(xP) =

[

Dxϕk(xP)
]

xP (3.5.17)

Equation 3.5.17 applies to any P and k ∈ P. By Euler’s Theorem,
each ϕk is homogeneous of degree β. Since this holds for every k ∈ P,
ϕP = DxPuP is homogeneous of degreeβ in xP because each component
of ϕP is homogeneous of degree β in xP.

An appeal to Theorem 3.1.7 shows that either for all P ∈ P, we can
write uP(xP) = cP + bP

(

vP(xP)
)γ

where γ = 1 + β 6= 0, or that for all
P ∈ P, we can write uP(xP) = φP + bP ln vP(xP). In both cases, vP > 0
is homogeneous of degree one. The functions φP are homogeneous of
degree zero.

The fact that du ≫ 0 is responsible for the requirement bPγdvP ≫
0. �
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