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We now turn our attention to the economy as a whole. We start by focusing on the
problem of general equilibrium. We consider all markets together. The simplest general
equilibrium models include goods markets, service markets, and factor and resource
markets.

The central problem of general equilibrium is to determine whether it is possible to
find prices so that all markets simultaneously clear. After all, it could be that adjusting
prices to clear one market will always force another market out of equilibrium.

If we can answer the central problem in the affirmative, we can then go on to
analyze the properties of general equilibrium. How does the equilibrium change
when parameters change? What principles govern equilibrium resource and goods
allocations? How good a job does the equilibrium do at efficiently using resources and
allocating goods and services?

We start by describing the basic characteristics of an economy in section one. Section
two defines a type of general equilibrium, the Walrasian equilibrium, and investigates
some of its basic properties. We then provide some examples of equilibrium in pure
exchange economies—economies without production, in section three. Section four
examines equilibrium in production economies. Production economies with constant
returns to scale are often easier to analyze. Section five includes several general results
for such economies, including the Non-substitution Theorem, factor price equalization,
and the Rybczynski and Stolper-Samuelson effects.
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15.1 What is an Economy?

An economy consists of consumers and producers engaging in economic activity–
consuming, producing, and trading. We formalize this as follows.

Economy. An economy is a collection of I consumers, labeled i = 1, . . . , I, and F
firms, f = 1, . . . , F, using m goods, j = 1, . . . ,m. Each consumer is characterized
by a consumption set Xi ⊂ R

m
+ , preferences %i defined on the consumption set Xi,

and an exogenous endowment of goods ωi ∈ R
m
+ . If preferences are continuous,

we represent them via a utility function ui. Denote the aggregate endowment by
ω =

∑

i ω
i. Each firm f is characterized by a technology set Yf. We can write the

economy as E =
(

(Xi,%i,ω
i)Ii=1, (Yf)Ff=1

)

.1

When writing vectors belonging to consumers or firms, we will superscripts to denote
ownership, which consumer or firm the vector pertains to, and subscripts to indicate
the goods. For example, xik is the amount of good k consumed by consumer i.

1 When there is no risk of confusion, we may use the shorthand form E = (Xi,%i,ω
i, Yf).
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15.1.1 Allocations
We will be interested in what is produced, consumed, and traded in the economy.
The totality of consumption and production choices are described by an allocation. An
allocation is feasible if the economy has sufficient resources to support the allocation.
That is, it is feasible if the sum of consumption vectors is the production possibilities set.

Allocations. An allocation is a (I+ F)-tuple of vectors in R
m,
(

(xi)Ii=1, (y
f)Ff=1

)

such that
xi ∈ Xi for all i, yf ∈ Yf for all f. We say an allocation is feasible if it obeys the
feasibility constraint

I
∑

i=1

xi ≤
I

∑

i=1

ωi +
F

∑

f=1

yf,

and that the allocation is non-wasteful if everything available is consumed,
∑

i x
i =

∑i
ωi +

∑

f y
f. We will often use the shorthand (xi,yf) to denote the allocation

(

(xi)Ii=1, (y
f)Ff=1

)

.

The economy starts with an endowment of goods, some of these goods become inputs
into some production process, others may be directly consumed. The net output of
the production sector, together with the remainder of the endowment, is then available
for consumption. Firms may produce intermediate goods that are used as inputs to
production processes within the firm or by other firms. Such intermediate goods wash
out when summing net output vectors over all firms.
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15.1.2 Pure Exchange Economies
One special case is the pure exchange economy. In a pure exchange economy, no
production takes place. The only economic activity is the exchange of goods from
consumer endowments. We can regard this as an economy with one firm that has
production set Y1 = R

m
− , the negative orthant. The negative orthant is the smallest

possible production set. It is not productive. It only allows disposal of goods or
inaction.2

2 Since feasibility requires that aggregate consumption be no more than the endowment plus net
production, setting Y1 = {0} would yield the same feasible allocations. However, the non-wasteful
allocations would differ.
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15.2 Walrasian General Equilibrium Models

The first comprehensive theory of general equilibrium was created by Walras in 1874
(Walras, 1926). He built well, and his basic framework is still the one we use. In fact, if
you read Walras, you will find that his full framework entails a much richer economic
structure than used here, allowing for dynamics, uncertainty, and existence of multiple
currencies. He even briefly considers the impact of taxation and monopoly.

Our notion of Walrasian equilibrium has been stripped to the basics. Consumers
maximize utility, firms maximize profit, and markets clear.

Like Walras, we will later consider dynamics and uncertainty (Chapters 25 to 28). For
these subjects, the types of models used still build on the basic Walrasian model, but in
a rather different way from Walras’ models that include dynamics and uncertainty. For
now, we focus on the basics.
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15.2.1 Circular Flow
Defining an equilibrium requires we account for all money flowing through the econ-
omy. The circular flow diagram in Figure 15.2.1 illustrates the situation.

Consumers obtain income by selling all or part of their endowments, including labor.
They spend income by purchasing goods. Firms pay for their inputs and receive revenue
from their outputs, possibly making a profit. Before defining an equilibrium, we must
specify where the profit goes, or who pays if there is a loss. We will follow standard
practice and attribute it to the owners of the firms—the consumers. We do this via
ownership shares.

ConsumersFirms

Product Markets

Factor Markets

p·x

Goods & Services

p·ω

Factor Inputs

p·x

Goods & Services

p·ω

Factor Inputs

Net Profits

π = p·x− p·ω

Figure 15.2.1: The basic Walrasian equilibrium model has a simple circular flow diagram.
Trades within the firm and consumer sectors are not shown. All that is left is that consumers
buy goods and services from the firms and sell labor and other resources to the firms. However,
this leaves firms with a profit that is not spent. In the Walrasian model this is returned to the
consumers according to their endowments of firm shares. The shares are endowments, not
factors, so there is only a money flow without the corresponding capital goods flow often
seen in circular flow diagrams.
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15.2.2 Firm Shares
Let θi

f denote consumer i’s ownership share of firm f. Here θi
f ≥ 0 for all i and f and

∑

i θ
i
f = 1 for all f. We can think of θi

f as being the percentage of firm f owned by
consumer i. The numbers θi

f indicate the disposition of firm f’s profits and losses. The
ownership shares are not traded.3

The economy is written4

E =
(

(Xi,%i,ω
i)Ii=1, (Yf)

F
f=1, (θ

i
f)
I,F
i=1,f=1

)

.

If E is an exchange economy, firm 1 has Y1 = R
m
− and its maximum profit is zero. In

that case, we do not have to worry about the ownership shares as there is no income
from the firm to distribute. We then write E = (Xi,%i,ω

i).

3 Nothing is gained by allowing trade in the ownership shares. If a share of the firm earns $1 profit, then
that share would sell for $1. Buying or selling it would not affect the consumer’s budget constraint. This
argument only holds in a world of certainty. If profits were uncertain, the price of a share with expected
profit of $1 may no longer be $1.

4 When there is no risk of confusion, we may use the shorthand notation E = (Xi,%i,ω
i, Yf, θ

i
f).
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15.2.3 Walrasian Equilibrium
We are now ready to define general equilibrium. The definition we use is basically
that of Walras. In a Walrasian equilibrium, both firms and consumers are treated as
price-takers. Firms maximize profit and consumers maximize utility. Equilibrium prices
are price vectors where all markets clear.5.

Walrasian Equilibrium. A price vector p̂ > 0 and allocation (x̂i, ŷf) form a Walrasian
equilibrium for the economy E if:

1. Firms maximize profit: For each f = 1, . . . , F, p̂·ŷf ≥ p̂·y for all y ∈ Yf.
2. Consumers maximize utility: For each i = 1, . . . , I, x̂i %i x for all x ∈ B(p̂,mi)

where mi = p̂·ωi +
∑

f θ
i
f p̂·ŷ

f.
3. Markets clear:

∑

i x̂
i ≤

∑

i ω
i +

∑

f ŷ
f.6

Walras’ original definition of equilibrium used a stricter definition of market clearing,
requiring the equality of supply and demand. Schlesinger (1935) and Zeuthen (1933)
showed that supply of resources could exceed demand for unproduced resources,
precluding equilibrium. Schlesinger suggested solving this problem by requiring that
demand be no more than supply, the now standard definition of market clearing.

Many fancier versions of general equilibrium exist, allowing for taxation and gov-
ernment spending, public goods and externalities, intertemporal choice, uncertainty,
financial markets, imperfect competition, and other complications.7 Including addi-
tional types of economic behavior requires some minor adjustment to the model, and
sometimes a revised accounting for income flows, but all are similar to the basis Wal-
rasian model. They contain the core ideas: consumers maximize utility, firms maximize
profits, and markets clear.

5 Other names for Walrasian equilibrium are competitive equilibrium, Arrow-Debreu equilibrium, and
Arrow-Debreu-McKenzie equilibrium. In this book, the term Arrow-Debreu equilibrium is reserved for
the contingent commodity equilibrium of section 27.2

6 This means the allocation (x̂i, ŷf) is feasible.
7 Intertemporal choice is considered in Chapter 25, while financial markets are the subject of Chapters

27 and 28.
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15.2.4 Excess Demand and the Equilibrium Set
Let πf(p) = p·yf(p) be the profit of firm f and xi(p,mi) be the Marshallian demand of
consumer i. Keep in mind that we may have to use correspondences for the Marshallian
demands or for the firms’ supply. Given an economy E, we define the excess demand,
the difference between demand and supply, by

z(p) =
∑

i

x
(

p,mi(p)
)

−
∑

i

ωi −
∑

f

yf(p)

where
mi(p) = p·ωi +

∑

f

θi
f πf(p)

is consumer i’s income from sale of the endowment and shares of firm profits.
Excess demand can be either a function or correspondence. The equilibrium set, the

set of Walrasian equilibrium prices, is defined by

W(E) =
{

p : z(p) ≤ 0
}

.

We will sometimes consider economies characterized by excess demands z(p). In
that case we will abuse notation slightly and write W(z) for the corresponding equilib-
rium set.
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15.2.5 The Price Level is Not Determined
One basic result is that the price level doesn’t matter for equilibrium. Absolute prices
don’t matter. For Walrasian equilibrium, only relative prices matter. The absolute price
level is irrelevant in general equilibrium, we can set it as we please.

Proposition 15.2.2. If (p̂, x̂i, ŷf) is a Walrasian equilibrium for E, so is (tp̂, x̂i, ŷf) when-
ever t > 0. In other words, W(E) is a cone.

Proof. The point is that both firm supplies and consumer demands are homogeneous
of degree zero in p, so the same allocation maximizes profit and utility under both p
and tp for any t > 0. Since markets clear at p and the allocation is unchanged, they
also clear at tp. �
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15.2.6 Choosing a Price Level
Since the actual absolute level of prices is irrelevant, we can normalize prices in any
fashion we wish. It is purely a matter of convenience. Three methods are often used.
One is to choose a good as the unit of account, a numéraire good. We then measure
all prices relative to the price of the numéraire good.

The widespread use of fiat currency now hides it, but the numéraire method was
long used. Metals such as bronze, silver, and gold were all used as numéraire goods,
with coins denominated in weights of that metal. The Roman denarius was originally
1/72 of a Roman pound of silver, the British pound sterling was originally a pound of
silver.

When the United States moved to a gold standard in the 19th century, the $20
Double Eagle was a troy ounce of gold. The term “dollar” itself indicates a weight of
metal. It derives from thaler, a one ounce silver coin produced by various Counts von
Schlick from the mines near Joachimsthal (now part of the Czech Republic). The first
US dollars were based on the Spanish reales de a ocho or pesos de ocho (pieces of
eight), themselves derived from the thaler.8

Although metal currency was progressively replaced by fiat currency during the 20th

century, the US government still used gold as money internationally until President
Nixon closed the gold window on August 15, 1971.

8 The eight pieces were often referred to as “shillings” or “bits”. Thus the term “two bits” for a quarter.
These and other Spanish coins such as the doubloon (four dollars) were long considered legal tender in
the US. They were about a quarter of all circulating circulating coins as late as 1830. This was ended by
the Coinage Act of 1857, which removed the legal tender status of all foreign coins, giving the US Mint
a monopoly on legal coinage in the US.
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15.2.7 Three Ways to Choose a Numéraire
We can treat any commodity as the unit of account for purposes of setting the price
level.

To use good k as the numéraire, we need only multiply p by 1/pk to obtain the
normalized prices. Of course, this only works if pk > 0, which can’t always be
guaranteed.

A second method of setting the price level is based on the fact that some price must
be non-zero. This normalization sets

∑

k pk = 1, insuring the price vector is in the
(m−1)-dimensional simplex

∆m =

{

p ≥ 0 :
∑

k

pk = 1

}

.

To normalize prices in this fashion, we multiply by 1/
∑

k pk. It doesn’t matter if some
prices are zero. This normalization works unless they’re all zero, and they can’t all be
zero.

Finally, normalizing prices so the aggregate endowment has value 1 is sometimes
convenient. In that case we set p·ω = 1.



15. COMPETITIVE EQUILIBRIUM 13

15.2.8 Walras’ Law
Now that we have a price system, we can ask about the value of consumption and the
value of production. The fundamental relation between them is given by Walras’ Law.
It establishes that everything has been properly accounted for.

Walras’ Law. Suppose consumer preferences are locally non-satiated, that for each firm
f, the net output yf(p) maximizes profit for firm f, and that for each consumer i, the
consumption bundle xi(p) solves i’s consumer’s problem with income p·ωi +

∑

f θ
i
f p·

yf(p). Then
∑

i

p·xi(p) −
∑

i

p·ωi −
∑

f

p·yf(p) = 0. ( )

Proof. As in Lemma 4.3.3, local non-satiation implies each consumer spends all
available income. Thus

p·xi(p) = p·ωi +
∑

f

θi
f p·y

f(p).

Summing over i = 1, . . . , I, yields

∑

i

p·xi(p) =
∑

i

p·ωi +
∑

i

∑

f

θi
f p·y

f(p)

=
∑

i

p·ωi +
∑

f

(

∑

i

θi
f

)

p·yf(p)

=
∑

i

p·ωi +
∑

f

p·yf(p)

which is equivalent to equation . �
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15.2.9 Walras’ Law and GDP
As we saw in the proof, Walras’ Law can also be written:

∑

i

p·xi(p) =
∑

i

p·ωi +
∑

f

p·yf(p).

In other words, the aggregate value of consumption (the left-hand side) must equal the
value of the economy’s resources together with the value of production (the right-hand
side).

This form of Walras’ Law is basic to our notions of GDP accounting, and hints at
the way that general equilibrium can tie together microeconomic and macroeconomic
issues. One can approach GDP accounting by considering either the value of con-
sumption or the value of resources plus production. By Walras’ Law, you get the same
GDP either way.
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15.2.10 Walras’ Law: Market Clearing
For general equilibrium models, Walras’ Law has two particularly important conse-
quences: 1) If all markets but one clear, then all markets clear. 2) Any good that is in
excess supply must be free—its price must be zero.

The first consequence of Walras’ Law follows immediately.

Corollary 15.2.3. Suppose consumer preferences are locally non-satiated and let prices
obey p ≫ 0. Suppose further that for each firm f, the net output yf maximizes firm
f’s profit, and that for each consumer i, the consumption bundle xi solves i’s utility
maximization problem with income mi = p·ωi +

∑

f θ
i
f p·y

f. If every market but one
clears, then the remaining market must also clear. That is, if

∑

i x
i
k =

∑

iω
i
k +

∑

f y
f
k

for k = 1, . . . ,m, with k 6= j, then market j obeys
∑

i x
i
j =

∑

iω
i
j +

∑

f y
f
j . Moreover,

(xi,yf,p) is a Walrasian equilibrium.

Proof. We appeal to Walras’ Law as stated in equation .

0 =
∑

i

p·xi(p) −
∑

i

p·ωi −
∑

f

p·yf(p)

=
∑

k

(

∑

i

pkx
i
k(p) −

∑

i

pkω
i
k −

∑

f

pky
f
k(p)

)

= pj

(

∑

i

xij −
∑

i

ωi
j −

∑

f

yf
j

)

where the last line follows because all of the sums for goods k 6= j are zero. Since
pj > 0, the market for good j also clears with equality. Since firms are maximizing
profits, consumers are maximizing utility, and markets clear, (xi,yf,p) is a Walrasian
equilibrium. �
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15.2.11 Walras’ Law: Complementary Slackness
The heart of the second result is a complementary slackness condition. For each good,
either the equilibrium constraint binds, or the corresponding price is zero.

Lemma 15.2.4. Suppose preferences are locally non-satiated and (p̂, x̂i, ŷf) is a Wal-
rasian equilibrium with p̂ ≥ 0. Then

p̂k

(

∑

i

x̂ik −
∑

i

ωi
k −

∑

f

ŷf
k

)

= 0

for every k = 1, . . . ,m.

Proof. By market clearing,

∑

i

x̂ik ≤
∑

i

ωi
k +

∑

f

ŷf
k

for every k = 1, . . . ,m. As p̂k ≥ 0,

p̂k

(

∑

i

x̂ik −
∑

i

ωi
k −

∑

f

ŷf
k

)

≤ 0

for every k = 1, . . . ,m. That is, each term in the sum in Walras’ Law is non-positive.
Since they sum to zero, each term must be zero, which is the result we were trying to
prove. �
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15.2.12 Walras’ Law: Excess Supply implies Zero Price
Lemma 15.2.4 allows us to make short work of the second consequence of Walras’
Law. Any good in excess supply must be a free good—its price must be zero.

Corollary 15.2.5. Suppose preferences are locally non-satiated and that free disposal
is satisfied for at least one firm. Let (p̂, x̂i, ŷf) be a Walrasian equilibrium. If

∑

i x̂
i
k <

∑

i ω
i
k +

∑

f ŷ
f
k, then p̂k = 0

Proof. Free disposal implies that prices must be non-negative as profit maximization
would be impossible otherwise.

By Lemma 15.2.4,

p̂k

(

∑

i

x̂ik −
∑

i

ωi
k −

∑

f

ŷf
k

)

= 0

for every k = 1, . . . ,m. If
∑

i x̂
i
k <

∑

iω
i
k +

∑

f ŷ
f
k, it must be that p̂k = 0. �

Together with normalization of prices, these results simplify calculation of equilibria
by reducing the number of equations and variables to consider, and by handling cases
involving excess supply.
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15.3 Pure Exchange: The Edgeworth Box

We now specialize to the case of a pure exchange economy (no production) with two
goods and two consumers. The consumption set is Xi = R

2
+. Then (x1, x2) is a feasible

allocation if xi ≥ 0, x1
1 + x2

1 ≤ ω1 and x1
2 + x2

2 ≤ ω2.9 We presume preferences are
monotonic and focus our attention on the non-wasteful allocations where x1

1 +x2
1 = ω1

and x1
2 + x2

2 = ω2.
When an allocation is non-wasteful, it is enough to know how much person 1 gets

to identify the allocation. Then person 2 receives the rest, x2 = ω − x1. Equally, if
we know what person 2 gets, we also know what person 1 gets. This is the key to
constructing the Edgeworth box.10 We can describe the non-wasteful allocation (x1, x2)
by the single point x1. We put a second origin at ω, and rotate the axes there by 180
degrees. If we use the original origin to label the point, we obtain person 1’s allocation.
If we use the new origin at ω, we obtain person 2’s allocation.

O
x1

1

x1
2

x2
2

x2
1 ω

b

b

b

x

Figure 15.3.1: The point x has co-ordinates (x1
1, x

1
2) when measured from the origin (O)

and co-ordinates (x2
1, x

2
2) when measured from ω. This allows us to represent the allocation

(x1, x2) as a single point. Note that x1
1 + x2

1 = ω1 and x1
2 + x2

2 = ω2.

9 Recall that we use superscripts to denote consumers or producers and subscripts to indicate which
good. Thus xik is the amount of good k consumed by consumer i.
10 Although named after Frances Edgeworth, and sometimes Arthur Bowley, this diagram is actually due
to Vilfredo Pareto (inspired by Edgeworth). Bowley got his name on it by popularizing it.
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15.3.1 Budget Lines in the Edgeworth Box
Budget lines also conform to this convention, with the same budget line serving for both
person 1 and person 2. There are two key points. First, slopes are unaffected by the
180◦ rotation that creates the other coordinate system. And second, if p·x1 = p·ω1,
then p·x2 = p·ω2. To see the latter, recall that non-wasteful allocations obey x1 +
x2 = ω = ω1 + ω2. Then price the equation, finding that p·x1 + p·x2 = p·ω =
p·ω1 + p·ω2. It follows that p·x1 = p·ω1 if and only if p·x2 = p·ω2.

O

ω

b

b

b

ω1

Figure 15.3.2: The same line serves as budget line for consumer one (read from the origin
as p·x1 = p·ω1) and for consumer two (read from ω as p·x2 = p·ω2). Consumer one’s
budget set is hatched, consumer two’s budget set is shaded. Notice that one or both budget
sets may contain points that are not feasible allocations.
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15.3.2 Edgeworth’s Ideas
For a moment, we will think like Edgeworth (1881), not Walras, and consider the
possibilities for trade without reference to a price system. Consumers trade because it
makes them better off. As a result, neither consumer will be willing to trade unless they
end up with a consumption bundle that they value at least as highly as their endowment
point. This means that for each consumer, the equilibrium point (if any) must yield at
least as much utility as the endowment point. This property of being at least as good as
the endowment is referred to as individual rationality.

The equilibrium point must lie within the lenticular region of mutually beneficial
trades, as shown in Figure 15.3.3.a. To find the equilibrium, we can use offer curves.

u2

u1

b ω1

x1

x2

(a)

O1

O2

b E

u1

b ω1

x1

x2

(b)

Figure 15.3.3: Both consumers have equal-weighted Cobb-Douglas preferences. The en-
dowments are ω1 = (1, 2) and ω2 = (2, 1).

In figure (a), the indifference curves through the endowment point are u1 and u2. The
shaded lenticular region between them denotes the region of potential trades, the region
where both consumers are at least as well off as at their respective endowments. Given the
initial endowment ω, any equilibrium point must lie within the lenticular area.

Figure (b) shows the offer curves O1 and O2 which trace demand for each consumer at
various prices. Notice how O1 lies above the indifference curve u1. The equilibrium is at E.
The budget line connects ω and E. It determines the equilibrium price vector, up to scalar
multiplication. Here p∗ = (2.5, 3).

The offer curve is the locus traced-out by the demand points as prices change. Since
the demand point is individually rational, the offer curve for consumer 1 lies above
1’s indifference curve. Any intersection of the offer curves (other than the endowment
point) is an equilibrium allocation, as in Figure 15.3.3.b where there is a unique such
intersection. The equilibrium price vector is then perpendicular to the line connecting
the endowment point and the equilibrium allocation.
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15.3.3 Equilibrium with Two Cobb-Douglas Consumers
Example 15.3.4: Suppose utility is identical for both people and given by u(xi) =
(xi1)γ(xi2)(1−γ) where 0 < γ < 1 and endowments are ω1 = (1, 2) and ω2 = (2, 3).
Incomes are m1 = p1 + 2p2 and m2 = 2p1 + 3p2, yielding demands

x1(p) = (p1 + 2p2)
(

γ/p1

(1 − γ)/p2

)

and x2(p) = (2p1 + 3p2)
(

γ/p1

(1 − γ)/p2

)

.

.
When drawn in an Edgeworth box, these demand curves are called offer curves.

Market demand is then

x(p) = (3p1 + 5p2)
(

γ/p1

(1 − γ)/p2

)

.

We find all the equilibria by setting x(p) = ω = (3, 5). Clearly either p1 = 0 or
p2 = 0 would lead to infinite demand, so we are free to pick either as numéraire. Set
p1 = 1. We now have two equations to determine one unknown: 3 = γ(3 + 5p2) and
5 = (1 − γ)(3 + 5p2)/p2. In fact, one of these equations is redundant due to Walras’
Law. We solve the first equation to find p2 = 3(1−γ)/5γ.11 This yields the equilibrium
allocation

(( (6 − γ)/5
(6 − γ)/3

)

,
( (9 + γ)/5

(9 + γ)/3

))

.

Any prices with p2/p1 = 3(1 − γ)/5γ are equilibrium prices. ◭

11 In equilibrium problems, you can check your work by verifying that it solves the unused equation.
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15.3.4 Equilibrium with Many Cobb-Douglas Consumers SKIPPED

Example 15.3.5: Suppose there are m goods and I consumers with identical Cobb-
Douglas utility functions u(x) = xγ1

1 · · ·xγm

m where each γj > 0 and
∑m

j=1 γj = 1. Let

ωi be consumer i’s endowment and ω =
∑

iω
i the social endowment.

Now solve for the equilibrium. Consumer i has demand

xi(p) = (p·ωi)





γ1/p1
...

γm/pm



 .

Aggregate demand is

x(p) =
I

∑

i=1

xi(p) =

(

I
∑

i=1

p·ωi

)





γ1/p1
...

γm/pm



 =
(

p·ω
)





γ1/p1
...

γm/pm



 .

We normalize prices so p·ω = 1. The market clearing condition becomes

ω =





ω1
...

ωm



 =





γ1/p1
...

γm/pm



 .

It follows that ωj = γj/pj, or equivalently, pj = γj/ωj for j = 1, . . . ,m. This price
vector and its positive multiples are the only equilibrium prices. The corresponding
equilibrium allocation is

x̂i = (p·ωi)ω =

(

m
∑

j=1

γj

ωi
j

ωj

)

ω.

◭
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15.3.5 Equilibrium with Two Leontief Consumers SKIPPED

Example 15.3.6: Let ω1 = (2, 1) and ω2 = (1, 1), so ω = (3, 2). Suppose utility
has the Leontief form ui(x

i) = min{xi1, x
i
2}.

O

ω

b

b

b

u1

u2

ω1

Figure 15.3.7: Two Leontief indifference curves are shown above. The dashed lines indicate
the corners of the Leontief indifference curves. The region of mutually beneficial trades is
the heavy line to the left of the endowment point ω1. It is clear that the budget line must be
horizontal to move to such points. That means the price vector is any (0, p) for p > 0. With
such a price vector, any point on the heavy line is an equilibrium allocation.

We first consider the case of both prices positive. In that case, market demand for
both goods must be the same. However, if x1 < 3, there will be excess supply of good
1, which is impossible with positive prices. But if x1 = 3, x2 = 3 also, and there is
excess demand for good 2. The market fails to clear and this is not an equilibrium.

If p2 = 0, x1 = (2, x1
2) with x1

2 ≥ 2 and x2 = (1, x2
2) with x2

2 ≥ 1. This means x2 ≥ 3.
Demand is larger than the endowment. The market for good two does not clear and
this cannot be an equilibrium.

That leaves p = (0, p). We use good two as numéraire and set p = 1. Then incomes
are m1 = 1 and m2 = 1. Demands for good two are x1

2 = 1 and x2
2 = 1, clearing that

market. For good one, any x1
1, x

2
1 ≥ 1 with x2

1 ≥ 1 and x1
1 + x2

1 ≤ 2 is an equilibrium
allocation, as shown by Figure 15.3.7.

Still larger consumption of good one is allowed by the budget constraint. Although
the consumers are equally well off here, it is not an equilibrium because there will be
excess demand for good one. ◭
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15.3.6 Equilibrium with Linear Indifference Curves SKIPPED

Example 15.3.8: We again consider a two-person exchange economy with endow-
ments ω1 = (2, 1) and ω2 = (1, 1). The utility functions are linear: u1(x1) = x1

1 + 2x1
2

and u2(x2) = 2x2
1 + x2

2.
As you can see in Figure 15.3.9, the region of mutual improvement lies above and to

the left of the endowment point. This means that the relative price of good one must
be between 1/2 and two, the slopes of the indifference curves through ω1.

b

O

bω

bω
1

u1u2

b D

b E

Figure 15.3.9: Again the endowments are ω1 = (2, 1) and ω2 = (1, 1). Both consumers
have linear indifference curves. Consumer one’s indifference curves have slope − 1

2 while
consumer two’s have slope −2. The shaded area shows the potential mutual improvements.

Since the budget line must connect the equilibrium with the endowment, it must have a
slope between − 1

2 and −2. However, if the slope is not − 1
2 , consumer one’s demand point

will lie outside the Edgeworth box. This is illustrated for a slope of −2 when consumer one’s
demand point is D.

The equilibrium budget line must have slope − 1
2 when consumer one is indifferent along

the entire budget line, while consumer two consumes only good one. The point E is the only
such point and is the equilibrium.

Let the price vector be (p, 1). If p > 1
2 , MRS1 = 1

2 < p and consumer one will only
consume good two. Then x1

2 = (p, 1) · (2, 1)/p = (2p + 1)/p > 2. This means that
demand for good two exceeds its supply and we cannot have an equilibrium.

It follows that p = 1
2

is the only possible price. Consumer one is then indifferent

between all points on the budget line. Consumer two has MRS2 = 2 > p and will
spend everything on good one, so x2

1 = (1
2
, 1)·(1, 1)/1

2
= 3 and x2 = (3, 0). By market

clearing, x1 = (0, 2), yielding the equilibrium point E in Figure 15.3.9. ◭
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15.4 Equilibrium in Production Economies

It’s a little more complex to find equilibria in economies with production. It’s usually
best to find the profit functions first, then substitute in the consumer’s problem to find
demands. Finally, use the market clearing conditions to find the equilibria. When
production is constant returns to scale, the problem is somewhat simplified since profits
are zero. There may also be strong restrictions on prices.
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15.4.1 Equilibrium with CRS Production
Example 15.4.1: Suppose there are two goods, two consumers and one firm. The
consumers have Cobb-Douglas utility ui(xi) = (xi1)1/2(xi2)1/2 and endowments ω1 =
(2, 0) and ω2 = (1, 0). Good two must be produced because none is available from
the endowment. The production set is Y = {(y1, y2) : y2 ≤ −y1, y1 ≤ 0}.

Profits will be maximized when y2 = −y1, so we must maximize

p1y1 + p2(−y1) = (p1 − p2)y1

under the constraint y1 ≤ 0. There is no maximum if p1 < p2 and so no equilibrium. If
p1 > p2, the maximum is only at y1 = y2 = 0. Since nothing is produced, consumers
can only consume good one. This requires that good two be unaffordable. Its relative
price must be infinite, so p1 = 0. Then p2 < 0, so there is again no equilibrium. Finally,
if p1 = p2, any (y1,−y1) with y1 ≤ 0 will maximize profits, which are zero. In this case
we may as well use good one as numéraire, normalizing prices so that p = (1, 1).

Notice how the fact of production determines the relative prices in equilibrium. The
only role demand played in determining prices was insuring they were strictly positive!

Consumer wealth is then m1 = 2 and m2 = 1, which yields demands x1 = (1, 1)
and x2 = (1/2, 1/2). Market demand is (3/2, 3/2). The market clearing condition is

y + ω = x1 + x2 or y +
( 3

0

)

=
( 3/2

3/2

)

,

so y2 = 3/2 and y1 = −3/2. The equilibrium is x1 = (1, 1), x2 = (1/2, 1/2),
y = (−3/2, 3/2) and p = (1, 1). ◭
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15.4.2 Economy where Production is Possible, but Unused SKIPPED

It is possible that some, or even all firms do not produce in equilibrium. Here’s a
simple example with one CRS firm that is not used in equilibrium.

Example 15.4.2: Suppose there are two goods, two consumers and one firm. The
consumers have Cobb-Douglas utility ui(xi) = (xi1)1/2(xi2)1/2 and endowments ω1 =
(3, 1) and ω2 = (1, 3), so the aggregate endowment is ω = (4, 4). Good two can be
produced from good one. The production set is Y = {(y1, y2) : y2 ≤ −y1/2, y1 ≤ 0}.

Profits will be maximized when y2 = −y1/2, so we must maximize

p1y1 + p2

(

−1

2
y1

)

=

(

p1 −
1

2
p2

)

y1

under the constraint y1 ≤ 0. There is no maximum if p1 < p2/2 and so no equilibrium.
If p1 > p2/2, the maximum is only at y1 = y2 = 0. If nothing is produced, the
consumers have only the aggregate endowment to consume. It becomes an exchange
economy. If we take good one as numéraire, the equilibrium is unique, p̂ = (1, 1). The
corresponding allocation is x̂1 = x̂2 = (2, 2). Since 1 = p1 > p2/2 = 1/2, production
must be ŷ = (0, 0). We have found an equilibrium, but it doesn’t use the technology
at all.

Are there any equilibria that do use the technology? For the technology to be
productive, we must have p2 = 2p1. Again taking good one as numéraire, p = (1, 2).
Incomes are m1 = 5 and m2 = 7. Each consumer spends half of their income on
each good, so demands are x1 = (5/2, 5/4) and x2 = (7/2, 7/4). Market demand is
x = x1 + x2 = (6, 3). By market clearing,

( 6
3

)

= ω + y =
( 4

4

)

+ y,

so y = (2,−1). But y /∈ Y as y1 > 0. It follows that the only equilibrium has p̂ = (1, 1),
x̂1 = x̂2 = (2, 2), and ŷ = 0. It does not use the production technology at all! ◭
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15.4.3 Equilibrium with DRS Production SKIPPED

Example 15.4.3: A production economy has 2 goods, 2 consumers, and 1 firm. The

consumers have identical Cobb-Douglas utility functions ui(x) =
√

xi1x
i
2. Endowments

are ω1 = (1, 1) and ω2 = (1, 0). Consumer one receives θ1
1 = 2/3 of the profits, while

consumer two gets θ2
1 = 1/3 of the profits. The firm produces good two. Its technology

is described by the production function f(z) = 2
√
z where z is the input of good one.

We first consider the firm. The firm’s profit is 2p2

√
z−p1z. The first-order condition

for maximizing this concave profit function is p2/
√
z = p1. Thus optimal input is

z = (p2/p1)2. The net output vector is

y(p) =

(

−
(p2

p1

)2

,
2p2

p1

)

yielding profit π(p) = p2
2/p1.

Preferences are equal-weighted Cobb-Douglas, so the consumers will spend half of
their income on good one and half on good two. The form of the utility function ensures
that neither good can have price zero, so it is okay to take good one as numéraire.
Let p be the (relative) price of good two. The firm’s profit is now p2. Wealth is
m1 = 1 + p + 2p2/3 and m2 = 1 + p2/3.

Consumer one has demand x1(p) = 3+3p+2p2

6 (1, 1/p) while consumer two’s demand

is x2(p) = 3+p2

6
(1, 1/p). Market demand is then x(p) = 2+p+p2

2
(1, 1/p).

The market clearing condition is

(2 + p + p2)(1/2, 1/2p) = (2, 1) + (−p2, 2p) = (2 − p2, 1 + 2p).

By Walras’ Law, it is enough to clear the market for good one. Thus 2+p+p2 = 4−2p2.
Rewriting, 3p2 + p− 2 = 0. This has solutions p = −1 and p = 2/3. Thus p = 2/3
is the equilibrium price. Production is then y = (−4/9, 4/3), profits are π = 4/9, and
the consumption vectors are x1 = 53

54
(1, 3/2) and x2 = 31

54
(1, 3/2). ◭
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15.5 General Equilibrium in Action

In some cases we can get strong results from general equilibrium models. In other
cases, a fair amount of structure is required to get clear answers to general equilibrium
questions. In fact, an entire subfield, computable general equilibrium, has grown up to
help model microeconomic problems where the whole economy must be examined.

In this section we present some basic results from general equilibrium theory: the
Non-substitution Theorem, factor price equalization, and the Stolper-Samuelson and
Rybczynski effects. All of these involve outcomes that are surprising or unobtainable
from partial equilibrium models.
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15.5.1 The Non-substitution Theorem
The usual view of price determination is that both supply and demand interact to
determine prices. It is normally not possible to say that supply alone or demand alone
determines prices. Alfred Marshall compared it asking which blade of a pair of scissors
cuts the paper, even though it takes both to cut the paper.

Remarkably, in general equilibrium, there are conditions under which demand is
irrelevant for price determination. One prominent case is that of the Non-substitution
Theorem.

The Non-substitution Theorem applies when there is a single primary (unproduced)
resource that is used by all firms. Labor is the canonical example. When the tech-
nology is constant returns to scale, and each firm produces exactly one good, the
Non-substitution Theorem tells us that all prices are determined by the production
technology. Demand does not affect the equilibrium prices.

This was illustrated in Example 15.4.1. There is one non-produced good, and one firm
producing the single produced good. In the example, once we know that something is
produced, the relative price is determined. It must be one. Demand for the produced
good does not affect its price.

We say good j is an essential input for firm f if y ∈ Yf with y 6≤ 0 implies yj < 0. In
other words, if the firm produces a positive amount of anything, it must use good j as
an input.

Non-substitution Theorem. Let E by an economy with one non-produced good (good
0) where each produced good f can be produced by exactly one firm, firm f (thus
m = 1 + F). Suppose further that the non-produced good is an essential input for every
firm and that each firm has a CRS technology. If each firm produces a positive amount of
their product in equilibrium, then prices must satisfy pf = bf(p) for f = 1, . . . , F, where
bf is the unit cost function for producing f. Moreover, once a price normalization has
been chosen, this system has a unique solution.
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15.5.2 Proof of Non-substitution Theorem

Non-substitution Theorem. Let E by an economy with one non-produced good (good
0) where each produced good f can be produced by exactly one firm, firm f (thus
m = 1 + F). Suppose further that the non-produced good is an essential input for every
firm and that each firm has a CRS technology. If each firm produces a positive amount of
their product in equilibrium, then prices must satisfy pf = bf(p) for f = 1, . . . , F, where
bf is the unit cost function for producing f. Moreover, once a price normalization has
been chosen, this system has a unique solution.

Proof. Due to constant returns to scale, the cost function of firm f can be written as
cf(p, qf) = bf(p)qf. The constant returns to scale also imply profits of each firm are
zero, pfqf − bf(p)qf = 0. Since qf > 0 in equilibrium, pf = bf(p).

As good 0 is essential, demand for it must be positive. It follows that the price must
be positive. We normalize prices by using it as numéraire. In fact, Shephard’s Lemma
implies demand for good 0 by firm f is

xf0 =
∂cf

∂p0
= qf

∂bf

∂p0
> 0.

Since the non-produced resource is essential, each firm must demand it, and ∂bf/∂p0 >
0 for f 6= 0.

Now suppose we have two solutions to p = b(p). Call them p and p′. Let
λ = maxj 6=0 p

′
j/pj (good 0 is excluded) and let k be a good where the maximum

occurs.
Suppose, by way of contradiction, that λ > 1. Since p0 = p′

0 = 1, λ = maxj p′
j/pj,

with good 0 included. Then λp ≥ p′ and the previously chosen k with p′
j = λpj is not

good 0. Now
p′
k = λpk = λbk(p) = bk(λp) > bk(p′) = p′

k, (15.5.1)

where the strict inequality arises because bk is strictly increasing in p0 and the price of
good 0 is higher at λp (λp0 = λ > 1 = p0).

But then p′
k > p′

k by equation 15.5.1, a contradiction. It follows that we cannot
have λ > 1, so λ ≤ 1. This implies p ≥ p′.

Reversing the role ofp andp′ yieldsp ≤ p′, so the solution top = b(p) is unique. �
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15.5.3 Factor Price Equalization
When there are multiple non-produced factors, the Non-substitution Theorem no
longer applies. Nonetheless, the technology can still exert a very strong influence
over prices. One related result is that when output prices are the same, so are factor
prices, provided the factor endowments are not too different. This is known as factor
price equalization.

To see how it works, let’s start with an activity analysis model where three goods
(j = 1, 2, 3) are produced using the two primary factors (j = 4, 5). Let

A = [a1,a2,a3] =











1 0 0
0 1 0
0 0 1
−1 −2 −4
−4 −2 −1











be the matrix of activities. Now suppose the price of each type of output is $1, so we
have three different activities that produce $1 of income at unit intensity.

We now construct the unit revenue curve in input space. Consider first the input
required to produce one dollar of revenue with each activity. These are b1 = (1, 4),
b2 = (2, 2), and b3 = (4, 1).
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15.5.4 Lerner Diagram
To obtain the unit revenue curve, first consider the isoquant for the production of
each output good that yields unit revenue. Since the price of each output is one,
these input vectors correspond to an output of one unit. For each activity, consider
the factor endowments that can be used with that activity to produce at least $1 of
revenue. Keeping in mind that free disposal is possible, we find that the cone with
vertex bj are input vectors that produce at least $1 of revenue. These cones have
vertices b1 = (1, 4)T , b2 = (2, 2)T and b3 = (4, 1)T , respectively.

Now take the convex hull of these cones, as illustrated in Figure 15.5.1. The shaded
region represents all factor combinations that generate at least $1 of revenue. Its frontier
is the unit revenue curve. Figure 15.5.1, which shows the inputs that can generate at
least $1 of revenue, is called a Lerner diagram or sometimes a Lerner-Pearce diagram.12

O

b

b1

b

b2

b

b3

x4

x5

Figure 15.5.1: Lerner Diagram. On the left, the unit revenue isoquant is generated from
activities a1,a2,a3 with corresponding unit revenue input vectors (x4, x5) = b1,b2,b3.

12 The Lerner diagram using unit-value isoquants, was introduced by Lerner (1952). Pearce (1952) used
a similar diagram using unit-quantity isoquants.
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15.5.5 The Endowment Determines the Scale of Production
Now consider profit maximization. Linear activity models always have constant returns
to scale. If profit can be maximized, the maximum profit is zero. Moreover, market
clearing requires that the resource endowment be fully utilized. Demand for resources
is given by Shephard’s Lemma. Put together, this all means that the endowment must
satisfy a cost minimization problem. In other words, the vector of input prices must
support the revenue curve at the endowment. Moreover, the zero profit condition
requires that factor prices are normalized so that cost equals revenue.

In practice, the endowment will rarely be on the unit revenue curve, so we have
to scale it, obtaining an isorevenue curve that contains the factor endowment. The
supporting prices give us the relative prices of the factors, and the absolute price of the
factors is set so that profit is zero. This is illustrated in Figure 15.5.2.

O

b

b

b

b ω

x4

x5

b1

b2

b3

R

Figure 15.5.2: We choose the isorevenue curve R containing the endowment ω. As long
as ω is not proportional to any of the bi’s, the relative factor prices are uniquely determined
by the isocost line that both supports the isorevenue curve R and contains the endowment
ω.

In the Lerner diagram in Figure 15.5.2, an endowment at ω = (1, 2)T leads us to
scale production so that the isorevenue curve R that goes through ω. The slope of the
isocost determines the relative factor prices (p4 = 2p5), while the zero profit condition
determines the factor price level (p5 = 1/6). Thus p = (1, 1, 1, 1/3, 1/6). Finally
the corresponding intensity levels can be found by setting supply ω equal to demand
z1b1 + z2b2 and solving

( 1
2

)

=
( 1 2

4 1

)(

z1

z2

)

to get z1 = 1/3 and z2 = 1/3.
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15.5.6 Cones of Diversification
Now consider Figure 15.5.3, which is Figure 15.5.2 with slightly different labels. The
dotted lines demarcate four cones, C1 through C4.

The same factor prices will obtain if the endowment is anywhere in the interior of
the cone marked C2. Moreover, if you have an endowment in C2, it will always be
cheaper to use activities a1 and a2 than a3. The cone C2 is one of the four cones of
diversification C1, . . . , C4 determined by this activity model. If your factor endowment
is in the interior of one of the cones, you use the activities that generate it and pay the
factor prices defined by tangent to the isorevenue curve.

In fact, the cone the endowment belongs to determines how and whether you
diversify production between the different activities. In cone C2 you diversify between
a1 and a2 (with inputs b1 and b2), while in cone C3 you diversify between a2 and
a3. Notice that if you are inside C1, the price of factor 5 is zero. You throw away any
excess and use only activity a1. Cone C4 is similar to cone C1, using only activity a3. If
you are on one of the rays generated by the bi, you use only that activity and a range
of factor prices are possible.

O

b

b

b

b ω

x4

x5

R

C1

C2

C3

C4

b1

b2

b3

Figure 15.5.3: This diagram illustrates the cones of diversification, C1, . . . , C4. The endow-
ment ω is in C2, where the relative factor prices are determined by the slope of the dashed
isocost line.
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15.5.7 Output Prices and Endowments Determine Factor Prices
Now that we’ve seen how endowments determine factor prices, we can go even further.
Let’s hold output prices fixed and vary the endowment so that it remains within the
same cone of diversification. Then factor prices remain unchanged.

This has implications for the theory of international trade. Consider a world of small
open economies where final goods are freely traded and transport costs are zero. In
such a world output prices must be the same in every country. Now suppose there are
barriers to trade in factors, but all countries use the same technology. If all countries have
factor endowments in the interior of the same cone of diversification, the factor prices
must be the same in all countries!13 However, any country with a factor endowment
in a different cone must have different factor prices.

13 Samuelson (1958) and Diewert and Woodland (1977) discuss factor price equalization. Textbook
presentations can be found in Dixit and Norman (1980), Feenstra (2016), or Woodland (1982).
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15.5.8 Output Prices and Cones of Diversification
The cones of diversification depend on output prices, but generally do so in a continuous
fashion. If your endowment is in the interior of a cone of diversification, small changes
in output prices will keep you in the same cone of diversification. Such changes in
output prices may change the level of factor prices, but they will not affect relative
factor prices.

Sometimes changes in output prices can cause discontinuous changes in the cones of
diversification. This happens when changes in output prices can make the production of
some goods relatively unprofitable. Such products will not be produced in equilibrium,
regardless of factor prices. In that case, the corresponding ray no longer determines
the edge of a cone, and the cones can coalesce. This happens in our example if
p = (2, 1, 1). By running activities a1 and a3 at intensity 2/5, we receive 6/5 dollars
while using two units of each factor. This is clearly better than running activity a2 at
unit intensity, which produces only 1 dollar of revenue from the same input.

Similarly, cones of diversification can split in two when output prices vary (just reverse
the order of the price change).

O

b b1 b b2

b
b3

x4

x5
C1

C5 = C2 ∪ C3

C4

Figure 15.5.4: Compared with Figure 15.5.3, doubling the price of good one moves b1

down. This makes it more profitable to not produce good two. While cones C1 and C4 are
unchanged, C2 and C3 are merged into a single cone of diversification C5 using activities 1
and 3. Activity 2 is not used.
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15.5.9 Factor Price Equalization with Smooth Cost Functions
Cones of diversification can also appear when factor proportions are variable. In this
case diversification is required for factor prices to be unique. Factor prices are not
unique if we are only producing one product, but may vary with the endowment.

O x1

x2

b

b

1

2

C

Figure 15.5.5: This Lerner diagram has been constructed from two variable proportions
technologies, each with a smooth unit revenue curve. The line tangent to both of them
determines the cone of diversification C. If the endowment is in C, the relative factor prices
are given by the slope of the tangent line. If the endowment is above C, only technology one
is used, while if the endowment is below C, only technology two is used.

Here’s another take on the same type of problem.
Example 15.5.6: Suppose endowments consist only of inputs to production and that

each firm produces only a single consumption good. Let ω denote the vector of factor
inputs. Suppose further that the number of firms equals the number of consumption
goods (F = L). We label firms according to the consumption good they produce.
Production possibilities are described by a CRS production function. Let w be the
vector of factor prices and pj the price of output for firm j. If there is an equilibrium
where all firms produce, pj = bj(w) for each firm j, where bj is firm j’s unit cost
function.

For given output prices p, it will typically be the case that there is at most one w
where all firms produce. All goods will have to be produced in equilibrium in cases
where for every good, some consumer’s marginal utility is infinite at zero consumption
of that good (e.g. Cobb-Douglas utility).

By Shephard’s Lemma, firm j’s input demand is zj = qjDwbj. Notice that the factor
demand zj = qjDwbj is determined solely by output prices. Since the input market
must clear, the output levels satisfy

∑

j qjz
j = ω. As long as ω is in the cone generated

by the zj, we can find a set of outputs corresponding to the output prices. ◭
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15.5.10 Stolper-Samuelson and Rybczynski Effects
An alternative approach to the study of equilibrium is to use duality and work in factor
price space rather than factor quantity space. For this we use the cost function, and
confine our attention to the smooth case.

We will consider two major results relating factor intensity to changes in prices and
quantities. The first result, due to Stolper and Samuelson, examines the effect of a
change in product prices on factor prices. In the two-good, two-factor case, they found
that that if factor 1 is more intensely used in production of good 1, an increase in the
price of good 1 increases the price of factor 1, but decreases the price of factor 2. The
second result, of Rybczynski (1955), shows that under the same intensity conditions, an
increase in the endowment of factor 1 increases output of good 1 and decreases output
of good 2.
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15.5.11 The Basic Model
Let cj(w, yj) denote the cost function for industry j. Due to constant returns, we may
write this as cj(w, yj) = yjbj(w) where bj denotes the unit cost function for industry
j, the cost of producing one unit of output. Shephard’s Lemma tells us that factor
demands by industry j for factor i at output level yj are xij(w) = yj ∂bj/∂wi.

Consider b(w) as a row vector of cost functions, so that

∑

i

yj ∂bj

∂wi

=
[

Dwb
]

y

is the column vector whose ithrow is the factor demand for good i when the (column)
vector y is produced.14

We focus on the case where all goods are produced in equilibrium, and all factors
are scarce. Equilibrium in the factor market requires that factor supply (ω) equal factor
demand, and that price equal cost. The equilibrium conditions are

ω =
[

Dwb
]

y,

p = b(w).

Because the columns of Dwb represent factor demands by each industry at unit output
and each yj ≥ 0, endowments must lie in the cone generated by the factor demands
of the various industries.

14 Be careful here! If b and w were (column) vectors,
[

Dwb
]

ij
= ∂bj/∂wi would be the component

of Dwb in the ithrow and jthcolumn. Since they are actually rows (covectors),
[

Dwb
]

ij
= ∂bi/∂wj,

which is the transpose of the column vector case.
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15.5.12 Stolper-Samuelson Effect I
Now consider the effect of a change in product price on factor prices. Differentiating
b(w) = p with respect to p, we obtain Dwb ×Dpw = I. When Dwb is invertible,
Dpw = [Dwb]−1. Let’s specialize to the case of two goods and two factors. Then

Dwb =
(

∂b1/∂w1 ∂b2/∂w1

∂b1/∂w2 ∂b2/∂w2

)

and
[

Dwb
]−1

=
1

∆

(

∂b2/∂w2 −∂b2/∂w1

−∂b1/∂w2 ∂b1/∂w1

)

where ∆ = (∂b1/∂w1)(∂b2/∂w2)− (∂b1/∂w2)(∂b2/∂w1).15 Let bj
i denote ∂bj/∂wi =

[Dwb]ij. In this notation,

Dpw = (Dwb)−1 =
1

∆

(

b2
2 −b2

1

−b1
2 b1

1

)

where ∆ = b1
1b

2
2 − b1

2b
2
1.

15 Note the form Dwb takes because b is a row vector.
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15.5.13 Stolper-Samuelson Effect II
Suppose factor one is always used more intensively in industry one. In other words,

x1
1/x

2
1 > x1

2/x
2
2. Since xji = yib

j
i, this means b1

1/b
2
1 > b1

2/b
2
2 and it follows that

∆ = b1
1b

2
2 − b1

2b
2
1 > 0. Then b1

1b
2
2 > ∆ > 0. In that case, p1 = b1

1w1 + b2
1w2 > b1

1w1,
so the elasticity of the factor price w1 with respect to output price p1 is

p1

w1

∂w1

∂p1
> b1

1

b2
2

∆
> 1.

This shows the Stolper-Samuelson result that the price of factor one rises by a larger
percentage than the price of good one when factor one is always used more intensively
in industry one. Moreover, the price of factor two falls. If the factor intensity reverses,
the Stolper-Samuelson result does not apply. Figure 15.5.7 shows such a case.

O

2

1
x1

x2

O x1

x2

Figure 15.5.7: On the left, factor one is always used more intensively in the production of
good one. We can see this by comparing the slopes of the isocost curves along each ray
through the origin. Because factor demands are normal to the isocosts, the relative demand
for good one is always higher in industry one.

The right panel shows a case involving a factor intensity reversal. The Stolper-Samuelson
result does not apply in such a case.
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15.5.14 Rybczynski Effect
There is a dual result, due to Rybczynski, concerning the effects of changes in endow-
ments on outputs. Here we start with the other equilibrium equation,

[

Dwb
]

y = ω
and differentiate with respect to ω, obtaining

Dwb×Dωy + Dw(Dwb)y ×Dωw = I.

Provided we stay in the same cone of diversification, Dωw = 0. Thus Dωy =
[Dwb]−1. Since b1

1y
1 + b1

2y
2 = ω1, we conclude b1

1 < ω1/y1. Similarly,

ω1

y1

∂y1

∂ω1
>

b1
1b

2
2

∆
> 1,

so the output of good one rises by a larger percentage than the endowment of factor
one (Rybczynski). The output of good two falls.
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