
21. The Edgeworth Conjecture

Walras imagined the economy as a collection of consumers and firms that reacted to
the prices they faced. However, he was unclear about exactly how that worked. When
arguing for existence of an equilibrium, he posited an auctioneer who organized the
market. Walras was not so foolish as to think that such a mechanism for finding an
equilibrium actually existed, but his use of the auctioneer highlights a deficiency in the
Walrasian approach. It doesn’t address price formation.

21.0.1 Edgeworth on Exchange
Instead of thinking of the economy in Walrasian terms, we go back to the ideas of
Edgeworth (1881). Edgeworth’s approach to equilibrium begins at the other end of the
market from Walras. Rather than treating markets as impersonal seas of price-taking
consumers and producers, Edgeworth made the market personal.

Edgeworth began his analysis by considering two people bargaining over the exchange
of goods. Each person brings an endowment of goods to the bargaining table. They can
either agree to trade with each other, or take their endowments home and consume
them. Edgeworth then asked what trades such consumers would be willing to make.

So what happens if the consumers trade until all gains from trade have been realized?
Edgeworth considered economies with more consumers and conjectured that in a large
economy, the result of such trades would be a Walrasian equilibrium allocation. The
first proof of such a result was the Debreu-Scarf Limit Theorem (1963), followed closely
by a proof for continuum economies by Aumann (1964).
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21.0.2 Chapter Outline
Section one starts by examining the incentives to trade. Section two builds on this
to define the core and shows that any Walrasian equilibrium allocation is in the core.
Section three shows how to enlarge the economy by replicating the consumers and
demonstrates that consumers of the same type must be treated equally in the core.
Section four proves the Debreu-Scarf Limit Theorem, showing that the allocations that
are in the core of every replica are exactly the Walrasian equilibrium allocations.

Outline:

1. Incentives to Trade
2. The Core of an Economy
3. Replica Economies
4. Core Equivalence
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21.1 Incentives to Trade

Edgeworth’s bargaining-based bottom-up approach also contrasts with the top-down
procedure of social welfare maximization examined in Chapter 20.4. When examining
Pareto optimality, we look at the whole economy in relation to aggregate resources.
The welfare optimum picks from the Pareto optima without regard for the individual
endowments. Only the aggregate endowment matters.

In contrast, the endowment is vitally important for Edgeworth’s method. It is the
starting point for trade. This means the endowments play a key role by determining
which trades are possible. The final results will depend on the initial distribution of
resources.

Now consider consumer incentives to trade. Neither consumer will be willing to trade
if the trade makes them worse off than their endowment. If they are not happy, they
will simply take their endowment and go home. This is the requirement of individual
rationality.
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Figure 21.1.1: The endowment point is denoted E. The individually rational allocations are
those in the cross-hatched region between both indifference curves. Any trade in that region
benefits both consumers.

Any competitive equilibrium also obeys individual rationality. A consumer can always
afford to keep their endowment. If they choose to buy some other basket of goods, it
is because it makes them better off.
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21.1.1 Individual Rationality
Suppose an economy has constant returns to scale production. We will presume that
everyone has access to a common production technology Y.

Individual Rationality. An allocation (xi,y) is called individually rational if there is no
consumer j and net output y ∈ Y with ωj + y ≻j x

j.

In other words, an allocation is individually rational if it makes each consumer at
least as well off as they could make themselves using their own endowment and the
common technology. In exchange economies the common technology is Y = R

m
−

, and
individual rationality means that each consumer gets something at least as good as their
own endowment.
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21.1.2 Pareto Optimality
Individual rationality is not the only requirement for Edgeworthian trading. If trades
have not resulted in a Pareto optimum, more trading is still possible. They will not have
exhausted the trading possibilities until they reach a Pareto optimum. We expect them
to continue to trade until they end up at an allocation that is both Pareto optimal and
individually rational.

This is the end of the story when there are two consumers. Edgeworth called the
resulting allocations the contract curve. We call them core allocations. With only two
consumers there are many possibilities on the contract curve, including the perfectly
efficient monopoly case where one consumer or the other gains all of the surplus.
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Figure 21.1.2: The endowment point is denoted E. The individually rational allocations are
those in the cross-hatched region between both indifference curves. Any trade in that region
benefits both consumers. The diagonal is the set of Pareto optima, where the trading possi-
bilities have been exhausted. The allocations that are both Pareto optimal and individually
rational form the contract curve C, shown by the heavy diagonal line.

Edgeworth’s idea was that as more people join the economy, the increased compe-
tition would put more constraints on the terms of trade. He argued that the contract
curve would shrink as the economy grows, with the competitive equilibrium emerging
in the limit as the economy becomes large.
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21.1.3 Trading between Two Cobb-Douglas Consumers
Let’s consider an example with two Cobb-Douglas consumers.

Example 21.1.3: Cobb-Douglas: Trading with Two Consumers. There are
two consumers with identical, equal-weighted Cobb-Douglas preferences, ui(xi) =
(xi1)1/2(xi2)1/2. Endowments are ω1 = (2.5, 0.5) and ω2 = (0.5, 2.5), yielding aggre-
gate endowment ω = (3, 3). We know that the set of Pareto optimal allocations is the
diagonal of the Edgeworth box. Thus xi1 = xi2 ≥ 0 and x1

1 + x2
1 = 3 characterize the

Pareto optima.

Individual rationality requires ui(xi) ≥ ui(ωi) =
√

1.25. The set of possible final
trades is then

{(x1
1, x

1
2, x

2
1, x

2
2) :

√
1.25 ≤ xi1 = xi2 ≤ 3 −

√
1.25, x1

1 + x2
1 = 3}.
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Figure 21.1.4: The endowment point is denoted E. The individually rational allocations are
those in the cross-hatched region between both indifference curves. Any trade in that region
benefits both consumers. With identical Cobb-Douglas preferences, the diagonal is the set
of Pareto optima—the allocations where the trading possibilities have been exhausted. The
allocations that are both Pareto optimal and individually rational form the contract curve C,
shown by the heavy diagonal line.

The dashed lines indicate the limits of the implied prices. Most of these prices are not
competitive equilibria, but indicate trades involving some degree of market power, with
monopoly pricing by one side or another at either end.

◭
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21.1.4 Equilibrium in Bilateral Monopoly
Before going on to consider markets with competition, we’ll take a quick look at
possibilities with only two individuals in the market. This situation is called bilateral
monopoly. It occurs when we have two individuals that are the sole sellers of two
different goods. That happens in a Edgeworth box when there are two individuals and
a region of mutual gain. Edgeworth showed they will end up on the contact curve C.
Where exactly they end up on the contract curve depends on the bargaining power
and skill of the the two individuals.

By appealing to the Second Welfare Theorem, we can think of any point on the
contract curve as an equilibrium with taxes and transfers. We can reinterpret that as
one side selling to the other by means of a two-part tariff.

A tariff is a schedule of prices, so a two-part tariff is a pricing system with two prices.
The first part is often called an entry fee or connection fee. By paying it, you get the
right to buy the product a given price, the second part of the tariff. Here we have two
goods, so we need to know the relative price, which will follow if we know the prices
of the two goods.

So if equilibrium with taxes and transfers has individual one paying a tax, we treat
that as the entry fee. By the budget balance condition it is the transfer to individual two.
The then relative price of the two goods determines the second part of the equivalent
two-part tariff.
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21.1.5 Equilibrium with a Two-part Tariff
I’ve illustrated below how a point where individual two collects all of the surplus can
be attained using a two-part tariff. As noted above, any point on the contract curve can
result from an appropriate two-part tariff.

Here the contact curve always corresponds to a price vector of (1, 1), and by putting
a budget line through the desired point, we find the entry fee to collect by comparing
with the value of the endowment. The relative price of 1 determined by the price
vector provides the second part of the tariff.
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Figure 21.1.5: This diagram has been modified from Figure 21.1.4. As before, the endow-
ment point is denoted E. Individual two can get the monopoly solution via a two-part tariff.
This is at the end of the contract curve C, where individual two has maximimzed utility over
the contract curve.

The first part of the tariff is the the difference in value of the two red budget lines. The
second part is the price vector is (1, 1). That tariff leads to individual one finding that the
optimal choice under such a tariff, point A, is equally good as the endowment.
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21.1.6 Making the Economy Larger with more Consumers
We turn this into a model of large economy by adding more and more people. Again
we ask what trades they would be willing to make. The presence of more people
increases competition and full monopoly pricing is no longer possible.

If Ada wants to make a trade with Bill and Chris, she not only has to offer them
something more valuable than what they have. She has to offer them something more
valuable than they could get by trading with each other. The larger the population is,
the more potential competitors there are.

We are not limited to two-way trades either. Trades can be arranged among larger
groups with many individuals. This possibility enforces a kind of Pareto optimality
within each possible subgroup. There is not only competition between individuals for
your business, but also between groups for your business.

With increased competition, people are no longer willing to settle for bad deals when
they can get a better deal elsewhere. Edgeworth’s idea was that in very large markets,
all trades must take place on the same terms, and these terms of trade define the
equilibrium prices.
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21.2 The Core of an Economy

For the rest of the chapter we focus on economies with constant returns to scale
production (including exchange economies).1 The economy is defined by E = (Xi,%i

,ωi, Y)Ii=1 where Y describes the aggregate technology. We require that Y is a non-
empty closed set obeying inaction, constant returns to scale, and the no free lunch
condition.2

1 As shown in sections 14.3 and 16.7, we can translate diminishing returns technologies into constant
returns by adding an “entrepreneurial factor”. The use of a constant returns to scale production set
considerably simplifies the proof of the Debreu-Scarf Limit Theorem.

2 For the moment we do not require free disposal. This allows us to consider exchange economies with
Y = {0}. It that case, allocations obey

∑
i x

i =
∑

i ω
i.
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21.2.1 Coalitions
We need to be able to deal with groups of consumers, coalitions. A coalition is a group
of consumers.

Coalition. Let I = {1, . . . , I} denote the set of consumers. A coalition is a non-empty
subset of I.

The total number of possible coalitions is 2I−1, ranging from single person coalitions
to the coalition I, the coalition of the whole.

The endowment of a coalition S is denoted ωS. It is the aggregate endowment of
the individuals in S, so

ωS =
∑

i∈S

ωi.

Given economy E = (Xi,%i,ω
i, Y), the endowment of the whole economy ω can be

written ωI.
Each coalition is allowed free access to the common technology, limited only by

their resources. Because the technology is additive, what one coalition does with their
resources does not affect the production possibilities of other coalitions.3

In this economy, (x1, . . . , xI,y) ∈ R
Im
+ × R

m is a feasible allocation, if
∑

i x
i =

y +
∑

i ω
i. The feasibility condition can be written more compactly in our notation:

xI ∈ ωI + Y.

3 Diminishing returns to scale would create complications here. See Aliprantis, Brown, and Burkinshaw
(1987).
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21.2.2 Blocking Coalitions
The concept of the core formalizes Edgeworth’s idea that bargaining proceeds until
all trading possibilities have been exploited. We look for allocations of that kind—
allocations that are the endpoint of Edgeworthian bargaining. These allocations are the
core. At a core allocation, no group of individuals is able to make any trade amongst
themselves, even if augmented by production, that makes each of them better off. If
such an improving trade is possible for a coalition S, we say that S blocks or improves
on the original allocation.

Block or Improve On. A coalition S ⊂ I can block or improve on the allocation (x̄i,y)
if there are xi ≥ 0 for i ∈ S such that:

1. xi ≻i x̄
i for all i ∈ S.

2. xS ∈ ωS + Y.4

4 This condition needs modification when diminishing returns are allowed. Again see Aliprantis, Brown,
and Burkinshaw (1987).
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21.2.3 Core Allocations
The core consists of the allocations that cannot be improved on (blocked) by any
coalition using only their own resources and the common technology.5

Core. The core of an economy E is the set of feasible allocations that cannot be
improved on (blocked) by any coalition. Such allocations are called core allocations.
We denote the set of core allocations in E by C(E).

5 Edgeworth used the term contract curve. Gillies (1953, 1959) introduced the game theoretic concept
of the core, which in this context, coincides with Edgeworth’s contract curve.
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21.2.4 Core and Individual Rationality
Core allocations are always individually rational.

Proposition 21.2.1. Any core allocation is individually rational for every consumer.

Proof. Suppose (x̂i, ŷ) is a core allocation. Let j be a consumer. That consumer
constitutes the coalition S = {j}. Since (x̂i, ŷ) is in the core, the coalition {j} cannot
improve on (x̂i). In other words, x̂j %j x

j for every xj ∈ ωj + Y. Since j was arbitrary,
the allocation (x̂i, ŷ) is individually rational. �

Individual rationality thus means that no singleton can block. If this is a one person
economy, it is the only requirement to be in the core. There are no other coalitions to
consider. In this Robinson Crusoe case, being in the core just means that the consumer
maximizes utility given their endowment and the production technology.
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21.2.5 Core and Pareto Optimality
In any economy with two or more consumers there will be at least one other type
of coalition to consider—the coalition of the whole. It is clear that any Pareto opti-
mal allocation cannot be improved on by the coalition of the whole because such an
improvement would be a feasible Pareto improvement. However, there can be alloca-
tions that are not quite Pareto optimal that can not be blocked by the coalition of the
whole. The problem is that everyone in the economy must be made strictly better off
for the coalition of the whole to improve on an allocation. This is not quite the same
as making a Pareto improvement because it requires that everyone in the coalition be
made strictly better off. A Pareto improvement for the coalition would only require that
everyone in the coalition be at least as well off, and that at least one person be better
off.

To examine this issue further we introduce a second type of Pareto optimality based
on the concept of a strong Pareto improvement.

Strong Pareto Improvement. The type of improvement used in the definition of the core
is not exactly the same as Pareto improvement. Instead of making one person better
off without harming anyone else, it requires that all people be made better off. We say
that (xi,y) is a strong Pareto improvement over (x̂i, ŷ) if xi ≻i x̂

i for all i.

These two notions of Pareto improvement, ordinary and strong, lead to two notions of
Pareto optimality. Pareto optimality requires that there are no feasible (ordinary) Pareto
improvements. This type of Pareto optimality is also called strong Pareto optimality.

Weak Pareto Optimum. A feasible allocation is a weak Pareto optimum if there are no
feasible strong Pareto improvements.6

6 The terminology works this way because ruling out any Pareto improvement is a bit harder than merely
ruling out strong Pareto improvements. Because of this it is easier to be a weak Pareto optimum than an
ordinary (strong) Pareto optimum.
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21.2.6 Weak Pareto Optimality
An example using the utility possibility set will help clarify the difference.

Example 21.2.2: Non-blockable, non Pareto optimal allocations. Define a two-
person exchange economy with utility u1(x) = x1 and u2(x) = x2 +

√
x1. Endowments

are ω1 = ω2 = (1, 1). We turn our attention to the goods allocation x1 = (2, 1) and
x2 = (0, 1) yielding utility allocation u1 = (2, 1). It is impossible to further increase
consumer one’s utility. It follows that the coalition of the whole cannot improve on
(x1, x2). However, the allocation u1 is not Pareto optimal as

(

(2, 0), (0, 2)
)

, with utility
allocation u2 = (2, 2) is a Pareto improvement. The utility allocation u1 is merely
weakly Pareto optimal.

b u1

b u2

O u1

u2

U

b

Figure 21.2.3: Here U is the utility possibility set for Example 21.2.2. The heavy line
indicates set of standard (strong) Pareto optima. The solid lines on the top and side of U
indicate additional utility allocations that are weakly Pareto optimal but not strongly Pareto
optimal. The allocation u2 Pareto dominates the allocations directly below it, such as u1, but
it does not strongly dominate them. As a result, those allocations are weakly Pareto optimal,
but not Pareto optimal.

◭
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21.2.7 Weak and Strong Pareto Improvements March 23, 2023

When preferences are strongly monotonic, any Pareto improvement can be used to
create a strong Pareto improvement.

Lemma 21.2.4. Let E = (Xi,%i,ω
i, Y)Ii=1 be an economy with a constant returns to

scale aggregate production set Y, where each consumption set is Xi = R
m
+ , and each

consumer has continuous, convex, and strongly monotonic preferences. If there is a
feasible Pareto improvement over an allocation (xi,y), then there is a feasible strong
Pareto improvement over (xi,y).

Proof. Suppose (x̂i, ŷ) is feasible and a Pareto improvement over (xi,y). Take a
consumer h so that x̂h ≻h xh. By monotonicity and the fact that Xh = R

m
+ , xh %h 0.

It follows that x̂h > 0, that there is some good ℓ with x̂hℓ > 0.
By continuity we may take ε > 0 small enough that x̄h = x̂h − εeℓ ≻h xh. For

i 6= h, define

x̄i = x̂i +

(

ε

I− 1

)

eℓ ≻i x̂
i %i x

i.

The strong preference is due to strong monotonicity. Then x̄i ≻i x
i for all consumers

i. Because
∑

i x̄
i =

∑
i x̂

i, the allocation (x̄i, ŷ) is feasible. It follows that (x̄i, ŷ) is a
feasible strong Pareto improvement over (xi,y). �

As a corollary, weak and strong Pareto optima are the same for economies satisfying
the hypotheses of Lemma 21.2.4.

Corollary 21.2.5. If E satisfies the hypotheses of Lemma 21.2.4, the two types of Pareto
optima are identical.
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21.2.8 The Core is Pareto Optimal
It immediately follows that any core allocation is Pareto optimal in such economies.

Proposition 21.2.6. Suppose E = (Xi,%i,ω
i, Y)Ii=1 be an economy with a constant

returns to scale aggregate production set Y, where each consumption set is Xi = R
m
+ ,

and each consumer has continuous, convex, and strongly monotonic preferences. Then
any core allocation is Pareto optimal.

Proof. This satisfies the hypotheses of Lemma 21.2.4. Suppose (x̂i, ŷ) is a core
allocation. If a Pareto improvement were feasible, Lemma 21.2.4 would yield a feasible
strong Pareto improvement. But then the coalition of the whole would be able improve
over (x̂i, ŷ), contradicting the fact that (x̂i, ŷ) is in the core. This contradiction shows
that no feasible Pareto improvements are possible—that (x̂i, ŷ) is Pareto optimal. �



21. THE EDGEWORTH CONJECTURE 19

21.2.9 The Core in a 2-person Economy
Suppose an economy has two consumers. In this case core allocations need only satisfy
a few conditions. There are 3 possible coalitions—the two singletons {1} and {2}, and
the coalition of the whole {1, 2}. The requirement that neither {1} nor {2} alone can
improve is individual rationality. The requirement that {1, 2} cannot block is Pareto
optimality. There are no other coalitions to consider. In a two-person economy, the
core coincides with the set of allocations that are both Pareto optimal and individually
rational.

Example 21.2.7: Leontief: Core with Two Consumers. We use the exchange
economy as in Examples 15.3.6 and 19.2.8 but with endowments ω1 = (2, 0.5) and
ω2 = (1, 1.5). The social endowment is ω = (3, 2). Utility has the Leontief form
ui(xi) = min{xi1, x

i
2}. Since this is a two person exchange economy, any individually

rational Pareto optimum is in the core.
Individual rationality requires ui(ωi) ≤ ui(xi), which means 0.5 ≤ u1(x1) and

1 ≤ u2(x2). For person one, anything more than (0.5, 0.5) will do, while person two
requires x2

1, x
2
2 ≥ 1, which translates to x1

1 ≤ 2 and x1
2 ≤ 1.

Using Example 19.2.8, the core is {(x1, x2) ∈ R
4
+ : 0.5 ≤ x1

2 ≤ x1
1 ≤ 1 + x1

2, x2
1 ≥ 1,

x2
2 ≥ 1 and x1 +x2 ≤ (3, 2)}. Except for the points where good one is not fully allocated,

this is illustrated in Figure 21.2.8.

b
ω1 u1

u2

O

ω

b

b

Figure 21.2.8: As in Example 19.2.8, the Pareto optimal allocations lie between the 45-
degree lines through the origins for both consumer one and two. Individual rationality
requires that the core be above the u1 indifference curve and below the u2 indifference
curve. Combining these criteria, we find that the core is the shaded area.

◭
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21.2.10 The Core in a 3-person Economy
In larger economies, Pareto optimality and individually rationality are both still required,
but they are no longer sufficient to show an allocation is in the core. These two
conditions account for the singleton coalitions and the coalition of the whole, but now,
there are other coalitions.

These other coalitions will usually impose additional requirements on the core. In
fact, in some economic settings those additional requirements will be so stringent that
the core will be empty. That is not a concern if there is a Walrasian equilibrium.

The following example has three consumers, and the combination of Pareto optimality
and individual rationality is not enough to determine the core.
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21.2.11 The Core in a 3-person Cobb-Douglas Economy
Example 21.2.9: Cobb-Douglas: Core with Three Consumers. Suppose three con-
sumers have identical Cobb-Douglas utility u(x) = (x1)1/4(x2)3/4 and endowments are
ω1 = (2, 0), ω2 = (1, 1), and ω3 = (1, 3).

As we know, identical Cobb-Douglas utility implies that Pareto optimal points will
have utility levels that sum to the utility of the aggregate endowment. Thus

u1 + u2 + u3 = u(4, 4) = 4. (21.2.1)

The corresponding allocation gives each consumer a share of the aggregate endowment
that is proportional to the utility level. Thus xi =

(

ui/u(ω)
)

(4, 4) = ui(1, 1). Moreover,
0 ≤ ui ≤ 4 for each consumer i.

Individual rationality imposes three constraints:

u1 = u1(x1) ≥ u(ω1) = 0,

u2 = u2(x2) ≥ u(ω2) = 1, and

u3 = 4 − u1 − u2 ≥ u(ω3) = 33/4.

(21.2.2)

Thus u1 ≥ 0 (which we already knew), u2 ≥ 1, and u1 + u2 ≤ 4 − 33/4 ≈ 2.280. The
latter two constraints supersede the constraints u2 ≥ 0 and u1 + u2 ≤ 4 (i.e., u3 ≥ 0).

With three consumers, we also have to consider the constraints imposed by the
requirement that no coalition of 2 people be able to improve. There are three of them:

u1 + u2 ≥ u(ω{1,2}) = u(3, 1) = 31/4,

u1 + (4 − u1 − u2) = 4 − u2 ≥ u(ω{1,3}) = u(3, 3) = 3, and

4 − u1 ≥ u(ω{2,3}) = u(2, 4) = 27/4.

(21.2.3)

The second equation of (21.2.3) simplifies to u2 ≤ 1.
Since u2 ≥ 1 and u2 ≤ 1, we have pinned down the bundle that consumer two

gets. It is x2 = (1, 1). Substituting in the other constraints in (21.2.3) , they reduce to
u1 ≤ 4 − 27/4 ≈ 0.636, u1 ≤ 3 − 33/4 ≈ 0.720, and u1 ≥ 31/4 − 1 ≈ 0.316. The first
constraint dominates the second, so this can be summed up by 31/4−1 ≤ u1 ≤ 4−27/4.
Thus the core is

C(E) =
{
(

u1(1, 1), (1, 1), (4 − u1)(1, 1)
)

: 31/4 − 1 ≤ u1 ≤ 4 − 27/4
}
.

◭
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21.2.12 Walrasian Allocations are in the Core
There is an analog of the First Welfare Theorems for core. Any Walrasian equilibrium
allocation is in the core. The proof of this is a slight modification of the proof of the
First Welfare Theorem.

Theorem 21.2.10. Suppose the economy E = (Xi,%i,ω
i, Y) consists of I consumers

and one constant returns to scale firm. Let (x̂i, ŷ, p̂) be a Walrasian equilibrium. Then
the allocation (x̂i, ŷ) is in the core.

Proof. Suppose a coalition S can improve on the allocation (x̂i, ŷ). Then, for each
i ∈ S, there are xi ∈ Xi with xi ≻i x̂

i and a y ∈ Y with xS = ωS +y. Due to constant
returns to scale, p̂·y ≤ p̂·ŷ = 0. The equilibrium income of consumer i is then p̂·ωi.
Now p̂·xi > p̂·ωi since x̂i maximizes utility over the budget set. Summing, we obtain

p̂·

(

∑

i∈S

xi

)

> p̂·

(

∑

i∈S

ωi

)

. ( )

But xS = y + ωS. Applying the price vector p̂ yields

p̂·

(

∑

i∈S

xi

)

= p̂·y + p̂·

(

∑

i∈S

ωi

)

.

Together with equation , this implies p̂·y > 0, which contradicts the fact that maximum
profit is zero due to constant returns to scale. We conclude that no coalition S can
block. It follows that the allocation (x̂i, ŷ) is in the core. �

In the two-consumer exchange case, we can see that the converse fails. There will
often be a unique Walrasian equilibrium allocation (as in all the Cobb-Douglas cases),
but the core is larger. There may be extreme core allocations that give all of the gains
from trade to one of the consumers. We saw this in Figure 21.1.4. This is the case of a
perfectly price-discriminating monopolist, not Walrasian equilibrium.
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21.3 Replica Economies

Edgeworth’s idea is that market prices emerge as the market becomes more competitive,
as there are more people trading. We use this idea to find a type of converse to Theorem
21.2.10, showing that core allocations in large competitive economies are Walrasian
equilibrium allocations.

First, we have to decide how to make the market more competitive. We will make
the economy larger by adding more people that are just like the people that already
exist in our economy. Moreover, we will do it without changing the proportions of the
various types of individuals, as defined by preferences and endowments.

This idea can be made precise by exactly duplicating the consumers that already
exist. Since the production set is constant returns to scale, we may leave it unchanged.
Nothing would gained by replicating it.
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21.3.1 R-fold Replica Economies
The economy obtained by replicating each consumer R times is called the R-fold replica
economy.

In the R-fold replica economies, we replace each consumer i by R clones of consumer
i. Each clone’s consumption set, preferences, and endowment are identical to that of
consumer i. The rth clone of consumer i is denoted #ri or (ri) with r = 1, . . . , R. We
also refer to (ri) as the rth individual of type i.

R-fold replica economy. Suppose the economy E = (Xi,%i,ω
i, Y) has I consumers

with endowments ωi and preferences %i. The R-fold replica of E is an economy with
R × I consumers. Consumer #ri has the same preferences, consumption set, and
endowment as consumer i in the original economy:

1. For each i, %ri=%i for r = 1, . . . , R.
2. For each i, Xri = Xi for r = 1, . . . , R.
3. For each i, ωri = ωi for r = 1, . . . , R.

The production set is unchanged. We denote the R-replica of E by ER.

It is evident that this type of replication does not affect the proportions of the various
types. Note that types with different imay have the same preferences and endowments.
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21.3.2 Equal Treatment in Replica Economies
A key result is that core allocations in the replica economies must treat all consumers of
type i equally. Since each consumer of type i gets the same allocation, we may indicate
core allocations of ER as if they were allocations in E, with each type’s consumption
listed only once.

The basic idea behind equal treatment is that if consumers of the same type are
not treated equally, we can form the coalition of the worst-off. By replacing their
current basket of goods with the average basket that these types receive, they can make
themselves better off, and so block the original allocation. There is a complication if
all of the consumers of the same type receive the same allocation, so that the average
is the same as the worst off consumer of that type. We solve that by using the same
method we used to show that any Pareto improvement could be converted to a strong
Pareto improvement by taking a bit from one of the better off consumers to make as
strong Pareto improvement, as in Lemma 21.2.4.

We first state the theorem, then examine a relevant example which shows how the
proof works, and finally provide the proof.

Equal Treatment Theorem. Let E = (Xi,%i,ω
i, Y)Ii=1 be an economy with a constant

returns to scale aggregate production set Y, where each consumption set is Xi = R
m
+ ,

and each consumer has continuous, strictly convex, and monotonic preferences. If
(x̂ri, ŷ) ∈ C(ER), then x̂qi = x̂ri for all i = 1, . . . , I and q, r = 1, . . . , R.
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21.3.3 Equal Treatment in a Cobb-Douglas Economy
The following example illustrates the essence of the proof even though it does not quite
satisfy the conditions of the theorem. The preferences in the example are only strictly
convex on the interior of each consumption set, but not on the entire consumption set.

Example 21.3.1: Equal Treatment. Start with an economy with three consumers with
Cobb-Douglas utility ui(x) = (x1)αi (x2)βi(x3)1−αi−βi for i = 1, 2, 3 where 0 < αi, βi

and αi + βi < 1. Endowments are ω1 = 0 and ωi = (1, 1, 1) for i = 2, 3.
We go to the three-fold replica, and examine the allocation where the type one

consumers receive xr1 = 0, the type two consumers receive

x12 =

( 1
2/3
1

)

, x22 =

( 1
1
1

)

, x32 =

( 1
4/3
1

)

,

and the type three consumers receive

x13 =

( 2/3
1
1

)

, x23 =

( 1
1
1

)

, x33 =

(4/3
1
1

)

.

We have labeled the consumers so that higher-numbered consumers of each type are
better off: xri -i x

si for r < s.
Now form a coalition S by taking the worst-off consumers of each type. The type

one consumers are indifferent, so we just pick one of them, say #(11). For the other
types it is clear that #(12) and #(13) are the worst-off consumers of types 2 and 3. This
means that S = {(11), (12), (13)} is a coalition of worst-off consumers of each type.

The average allocation received by each type is x̄1 = 0 and x̄2 = x̄3 = (1, 1, 1)T .
Since

∑
i x̄

i = (2, 2, 2) = ωS, this is feasible for S, the coalition of the worst-off.
We now show that the coalition S can improve on their allocation. We first take

the average received by each type, x̄i. Notice that this is not only feasible for S, but
that it strictly improves for #(12) and #(13). This is due to the strictly convexity of
preferences and the averaging distinct commodity bundles. In the case of type one,
everyone received the same consumption bundle, so the average consumption is no
improvement.

We now use the same method as in Lemma 21.2.4. We will take a little bit from
a better off consumer and distribute it to the consumer who has not gained. Choose
ε > 0 so that x̄3 − εe %3 x13. Set x̂11 = εe, x̂12 = x̄2, and x̂13 = x̄3 − εe. Then∑

i x̂
i1 =

∑
i x̄

i = ωS, so this is feasible for the coalition S. Moreover, x̂1i %1i x
1i, so

the coalition S can improve on (x1i). This means that (xri) is not in the core. ◭
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21.3.4 Proof of the Equal Treatment Theorem I
The method of forming the coalition of the worst-off works in general, and is the key
step of the proof of the Equal Treatment Theorem. We restate the Equal Treatment
Theorem before proving it.

Equal Treatment Theorem. Let E = (Xi,%i,ω
i, Y)Ii=1 be an economy with a constant

returns to scale aggregate production set Y, where each consumption set is Xi = R
m
+ ,

and each consumer has continuous, strictly convex, and monotonic preferences. If
(x̂ri, ŷ) ∈ C(ER), then x̂qi = x̂ri for all i = 1, . . . , I and q, r = 1, . . . , R.

Proof of Equal Treatment Theorem. We prove this by contradiction, following the
same procedure as in Example 21.3.1. First relabel the consumers so that higher
numbered consumers of each type have higher utility. In other words, we number
them so x̂ri -i x̂

si whenever r < s. This ensures that (1i) is a worst-off consumer of
type i (ties are allowed).

We will prove this by contradiction. Suppose equal treatment fails. Then there is
a type h with individuals r′, q′ obeying x̂r′h 6= x̂q′h. Let S be the coalition of the
worst-off, S = {(11), (12), . . . , (1I)}. We will show that the coalition of the worst-off can
improve over (x̂1i)(1i)∈S.

Let x̄i be the average consumption by consumers of type i, x̄i = 1
R

∑
r x̂

ri. By strict
convexity of preferences, x̄i %i x̂

1i for all i and x̄h ≻h x̂1h.
At this point we have a weak Pareto improvement for the coalition. To block, we

need a strong Pareto improvement. We need to make every one of the worst-off better
off. As in the proof of Lemma 21.2.4, we do that by taking ℓ with x̄h

ℓ > 0 and ε > 0
so x̄h − εeℓ ≻h x̂1h.7 The excess is then spread among the other worst-off consumers.
Define xi = x̄i + ε

I−1e
ℓ for i 6= h and xh = x̄h − εeℓ. Then xi ≻i x̂1i for every

i = 1, . . . , I.

7 Such a good ℓ must exist. First, x̄h ≻h x1h %h 0 by monotonicity. That shows that x̄h 6= 0. Since
Xh = R

m
+ , this implies x̄h > 0.
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21.3.5 Proof of the Equal Treatment Theorem II

Proof continues. All that is left is to show this is feasible for the coalition S of the
worst-off. For that, we use the production vector 1

R
ŷ ∈ Y. Then

I∑

i=1

xi =
I∑

i=1

x̄i + (I− 1)
ε

I− 1
eℓ − εeℓ

=
I∑

i=1

x̄i =
I∑

i=1

(

1

R

R∑

r=1

x̂ri

)

=
1

R

∑

ri

x̂ri =
1

R

(

ŷ +
∑

ri

ωri

)

=
1

R

(

ŷ +
I∑

i=1

Rωi

)

=
1

R
ŷ +

I∑

i=1

ωi =
1

R
ŷ + ωS.

Because this improving allocation is feasible, (x̂ri) is not in the core. This contradiction
shows that unequal treatment is impossible in the core. �
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21.3.6 When Equal Treatment Fails
When preferences are convex, but not strictly convex, the equal-treatment property
may fail when viewed in terms of consumption bundles. However, the same argument
still shows there is equal treatment in terms of preference—all consumers of the same
type receive indifferent consumption bundles. The following example illustrates this.

Example 21.3.2: Weak Equal Treatment with Convex Preferences. In this economy
consumer one has utility u1(x1) = min{x1

1, x
1
2} and endowment ω1 = (1, 1) and con-

sumer two has utility u2(x2) = x2
1 + x2

2 and endowment ω2 = (2, 1). Here p = (1, 1)
is an equilibrium price vector and the initial allocation gives equilibrium consumption.
The initial allocation is in the core.

In the 2R-fold replica economy take the allocation that gives xr1 = (1, 1) to the
type 1 individuals, while giving either xodd = (3, 0) or xeven = (1, 2) to the type
2 individuals, depending on whether they are odd or even-numbered. This is an
equilibrium allocation with price vector p = (1, 1), and hence in the core. However,
the type 2 consumers receive different consumption bundles depending on whether
they are odd or even. Although their consumption bundles differ, all of the type 2
consumers receive the same utility. Notice that giving them the average amount does
not increase their utility. ◭
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21.3.7 The Core in Replica Economies
The Equal Treatment Theorem means that allocations in the core of ER are replicas of
allocations in E itself. We can find the corresponding allocation in the core of E by
using the projection map where xri 7→ x1i for every r = 1, . . . , R. By equal treatment,
xri = x1i for every r.

This projection is invertible. We let Ĉ(ER) denote the projection of C(ER), the core

of ER. We can show Ĉ(ER) is contained in the core of the original economy E.

Proposition 21.3.3. Suppose that E = (Xi,%i,ω
i, Y)Ii=1 has strictly convex, monotonic,

and continuous preferences defined on Xi = R
m
+ , and that Y is a convex, CRS production

set. Then Ĉ(ER) ⊂ C(E).

Proof. Let (x̂i, ŷ) ∈ Ĉ(ER) and suppose that (x̂i, ŷ) /∈ C(E), there is a coalition
S that can improve over (x̂i, ŷ) with an allocation (xi,y). Now form the coalition
S′ = {(1i) : i ∈ S}, for whom x̂1i = xi improves. Since S′ is a coalition in ER, this shows
that (x̂i, ŷ) cannot be in the core of ER. This contradiction means that (x̂i, ŷ) must be
in the core of E. �
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21.4 Core Equivalence

Let’s take a closer look at the mapping between the core of a replica economy and the
core of the the original economy. It is easy to see that any feasible allocation in the
original economy that can be blocked in ER can also be blocked in ER+1 (just use the

same coalition). By Proposition 21.3.3, the projected cores Ĉ(ER) are all subsets of the

core of E. Then we have Ĉ(ER) ⊃ Ĉ(ER+1). The core shrinks as we replicate. We sum
this up in the following proposition.

Proposition 21.4.1. Suppose that E = (Xi,%i,ω
i, Y)Ii=1 has strictly convex, monotonic,

and continuous preferences defined on Xi = R
m
+ , and that Y is a convex, CRS production

set. Then Ĉ(ER+1) ⊂ Ĉ(ER) ⊂ C(E) for every positive integer R.

By Proposition 21.4.1, the core shrinks as we consider larger and larger replica
economies. This confirms Edgeworth’s intuition that competition in large economies
will reduce the number of core allocations. The big question is: Does the core shrink
to the set of Walrasian equilibrium allocations? Or are there other allocations that are
always in the core?
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21.4.1 Edgeworth Equilibria
We do know that any Walrasian equilibrium is in the core, and that its replicas are in
the core of the replica economies. It follows that

∞
⋂

R=1

Ĉ(ER)

is non-empty and contains all Walrasian equilibrium allocations. But does it contain
anything else? Following Aliprantis, Brown, and Burkinshaw (1987), we define the set
of Edgeworth equilibrium allocations as the intersection of the projections of the cores
of the replicas into the original economy

EE(E) =
∞
⋂

R=1

Ĉ(ER).

We can interpret Edgeworth’s conjecture as saying that the set of Edgeworth equilibrium
allocations is precisely the set of Walrasian equilibrium allocations.8

8 There are other interpretations. For example, the Edgeworth conjecture could refer to the core of a
continuum economy being equal to the set of equilibrium allocations. See Aumann (1964), Hildenbrand
(1974) and Hildenbrand and Kirman (1988)
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21.4.2 Core Shrinkage in a Cobb-Douglas Economy I
Although not commonly done, its fairly easy to make up examples that illustrate how the
core shrinks under replication. Example 21.4.2 does that using Cobb-Douglas utility.

Example 21.4.2: Cobb-Douglas: The Core Shrinks to a Point. We return to
the model of Example 21.1.3. The endowments in the original two-person economy
are ω1 = (2, 1) and ω2 = (1, 2). Each person has equal-weighted Cobb-Douglas
preferences. We know what the utility possibility set looks like for any coalition in any
replica. If a coalition has m members of type 1 and n members of type 2, the aggregate
endowment is (2m + n,m + 2n). Such coalitions exist if R ≥ max{m,n}. This yields
maximum aggregate utility of u(2m + n,m + 2n) = (2n2 + 5nm + 2m2)1/2, which
can be divided among the coalition members in any fashion.

Now consider whether a utility allocation u1 = 3 − x, u2 = x is in the core for large
replica economies ER. We consider a coalition S of m consumers of type 1 and (m+1)
consumers of type 2. This requires R ≥ m+ 1. The utility of S’s aggregate endowment
is (9m2 + 9m + 2)1/2. The coalition can improve on an allocation (3 − x, x) if the
coalition’s aggregate utility is larger than their current aggregate utility. That is, if

m(3 − x) + (m + 1)x < (9m2 + 9m + 2)1/2.

This can be simplified to

x < (9m2 + 9m + 2)1/2 − 3m. (21.4.4)

If equation (21.4.4) is satisfied, we can pick u′

1 > 3 − x and u′

2 > x with

mu′

1 + (m + 1)u′

2 < (9m2 + 9m + 2)1/2,

showing this allocation of utility is feasible for the coalition S. The coalition S can block
anything where they get less.

Now set
f(m) = (9m2 + 9m + 2)1/2 − 3m.

Since anything with x < f(m) can be blocked, the function f(m) puts a lower bound on
the utility x that consumers of type 2 can receive in the core. We need to investigate
the properties of f. Of course, f(m) > 0 for m = 0, 1, 2, . . . . The derivative obeys

f′(m) =
1

2
(18m + 9)(9m2 + 9m + 2)−1/2 − 3 > 0,

as can be seen after some rearrangement and squaring. As a result, the lower bound
on core utility rises as the size of the replica rises, shrinking the core.
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21.4.3 Core Shrinkage in a Cobb-Douglas Economy II
The function f(m) shows us how the core shrinks with every replication. In E, only
m = 0 gives a feasible allocation. This implies ui ≥

√
2 ≈ 1.4142. In E2, m = 1

is feasible, which yields ui ≥
√

20 − 3 ≈ 1.4721. From m = 2, we find ui ≥√
56 − 6 ≈ 1.4833. Then m = 3 yields ui ≥

√
110 − 9 ≈ 1.4881 and m = 4 yields

ui ≥
√

182 − 12 ≈ 1.4907. Each time we replicate the economy, we slice another
piece off the end of the core of the previous replica.

To prove that only x = 3/2 always remains in the core we compute the limit
limm→∞ f(m):

lim
m→∞

f(m) = lim
m→∞

3m

[

√

1 +
1

m
+

2

9m2
− 1

]

= 3 lim
m→∞

[

(1 + 1/m + 2/9m2)1/2 − 1

1/m

]

= 3 lim
m→∞

−1/m2 − 4/9m3

2
√

1 + 1/m + 2/9m2

/(−1

m2

)

= 3 lim
m→∞

1 + 4/9m

2
√

1 + 1/m + 2/9m2

= 3/2

with l’Hôpital’s rule used to obtain (21.4.5). If the consumers of type 2 receive less that
3/2 utils, there is a coalition of m consumers of type 1 and (m+1) consumers of type 2
that can block the allocation in Em+1 and higher replicas. The only point that remains
in core of all replicas is that one that gives utility 3/2 to every clone of both types of
consumers. This corresponds to the equilibrium allocation. ◭
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21.4.4 The Debreu-Scarf Limit Theorem
The shrinking core is not an artifact of Cobb-Douglas preferences, but applies across
a wide variety of economies. Preferences need not be Cobb-Douglas and they need
not be identical. Debreu and Scarf (1963) were able to show that the core not only
shrinks under replication, but that only the Walrasian equilibrium allocations remain in
the limit.9

Debreu-Scarf Limit Theorem. Let E = (Xi,%i,ω
i, Y)Ii=1 be an economy with a con-

stant returns to scale aggregate production set Y, where each consumption set is
Xi = R

m
+ , and each consumer has continuous, strictly convex, and monotonic pref-

erences. If an allocation (x̂i, ŷ) is an Edgeworth equilibrium, then there is a price vector
p̂ ≫ 0 so that (x̂i, ŷ, p̂) is a Walrasian equilibrium. Conversely, if (x̂i, ŷ, p̂) is a Walrasian
equilibrium, then (x̂i, ŷ) is an Edgeworth equilibrium.

9 The original Debreu-Scarf Limit Theorem applied only to exchange economies. The version here
is based on that in Boyd and McKenzie (1993). For an example of the complexity of the proof with
diminishing returns and distribution of profits, see Aliprantis, Brown, and Burkinshaw (1987).
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21.4.5 Sketch of Limit Theorem Proof
The Debreu-Scarf Limit Theorem tells us that the Walrasian equilibrium allocations are
the allocations in the intersection of the cores of the replica economies, the Edgeworth
equilibrium allocations.

The proof here works somewhat differently than in the example. Of course, we use a
separation argument to find the equilibrium price vector. The main issue is determining
what to separate. For each individual we consider the set of net trades that make them
better off. These are the sets (Bi − ωi) of the proof. We form the convex hull B of
these improving net trades. We then separate the convex hull B from the production
set Y to obtain an equilibrium price vector.

For that, we need to show that B and Y do not intersect. We prove this by contra-
diction. If B and Y do intersect, we can find a way to block the core allocation. We
take that convex combination of improving net trades that sits in Y. We approximate
the coefficients in the convex combination by rational numbers. If the approximation
is good enough, a coalition with those proportions will be able to block using those net
trades in a sufficiently large replica economy. Since a coalition can block, it is not in
the core of that replica. It is not an Edgeworth equilibrium. This contradiction shows
that the sets cannot intersect.

Then we find a price vector that separates B and Y. This will be the equilibrium price
vector. The remainder of the proof shows that we have a Walrasian equilibrium.
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21.4.6 Proof of Debreu-Scarf Limit Theorem I

Proof of Debreu-Scarf Limit Theorem. The second part follows immediately from
the fact that the R-fold replica of any Walrasian equilibrium of E is also a Walrasian
equilibrium in ER. The first part requires a separation argument.

Suppose (x̂i) is in the core of every replica of E. Let Bi = {x ∈ Xi : x ≻i x̂i} and
take B as the convex hull of ∪i(Bi−ωi). That is, B is the set of convex combinations of
vectors in ∪i(Bi −ωi). We will obtain the equilibrium prices by separating Y and B.10

We first show Y ∩ B is empty. By way of contradiction, we suppose Y ∩ B is not
empty. Then there is some y ∈ B∩ Y. This means there are αi ≥ 0 and zi ∈ (Bi −ωi)
with

∑
i αi = 1 and

∑
i αiz

i = y. Set xi = zi + ωi so that xi ∈ Bi. We will show
that y ∈ B will imply (x̂i, ŷ) can be blocked in some replica economy, contradicting
the hypothesis that (x̂i, ŷ) is in the core of every replica.

The necessary coalition will have approximately αi of the consumers of type i. Let
J = {i : αi > 0}. For i ∈ J and any positive integer k, define βk

i as the least integer
greater than or equal to kαi. Then

βk
i − 1 < kαi ≤ βk

i < kαi + 1.

It follows that βk
i → ∞ as k → ∞ and limk→∞ kαi/β

k
i = 1. Moreover, kαi/β

k
i ≤ 1.

In other words, βk
i is approximately kαi.

10 We separated
∑

i Bi and ω + Y, or equivalently,
∑

i(Bi −ωi) and Y, when we proved the Second
Welfare Theorem. For the core, we must pay attention to who owns what, so we prefer the second form.
Furthermore, the replica economies allow the possibilities of (rational) convex combainations, so we use
the convex hull instead of the sum.
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21.4.7 Proof of Debreu-Scarf Limit Theorem II

Proof continues. Define xi
k by

xi
k =

kαi

βk
i

xi +

(

1 − kαi

βk
i

)

ωi =
kαi

βk
i

zi + ωi.

Combine the facts that xi,ωi ∈ Xi and the convexity of Xi to see xi
k ∈ Xi.

Using continuity, we can find a K with xi
K ≻i x̂

i for all i ∈ J. We will focus on the
replica economy EK. Form a coalition S consisting of βK

i agents of type i in the replica
economy EK. This coalition prefers (xi

K) to (x̂i). It is also feasible for the coalition S
because

∑

i∈J

βK
i x

i
K =

∑

i∈J

βK
i

Kαi

βK
i

zi +
∑

i∈J

βK
i ω

i

=
∑

i∈J

Kαiz
i +

∑

i∈J

βK
i ω

i

= K
∑

i∈J

αiz
i +

∑

i∈J

βK
i ω

i

= Ky + ωS.

By constant returns, Ky ∈ Y, establishing feasibility of (xri
K )

βi

K

r=1,i∈J for the coalition S.
We have shown that if y ∈ (B ∩ Y), (x̂i, ŷ) can be blocked in EK. As (x̂i, ŷ) is in the

core, this is impossible, contradicting our assumption that Y ∩ B is non-empty. This
completes the proof that Y ∩ B = ∅.
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21.4.8 Proof of Debreu-Scarf Limit Theorem III

Rest of Proof. The hard work is now done. The rest involves a typical separation
argument. Each Bi is open by continuity of %i, which implies B is also open. We now
employ Separation Theorem D on B− Y (which is open) and 0 to find p̂ 6= 0 obeying
p̂·y < p̂·b, for all b ∈ B and y ∈ Y.

Since 0 ∈ Y, p̂·b > 0 for all b ∈ B. Now take b′ ∈ B. We have p̂·b′ > p̂·y for
all y ∈ Y. Since profit is bounded above and Y is CRS, p̂·y ≤ 0 for all y ∈ Y. We
conclude maximum profit is zero.

Now take x with x ≻i x̂
i. Then x−ωi ∈ B, which implies p̂·(x−ωi) > 0. That is,

p̂·x > p̂·ωi. By monotonicity, x̂i + 1
n
e ≻i x̂

i, so

p̂·x̂i +
1

n
p̂·e > p̂·ωi.

Letting n → ∞, we obtain p̂·x̂i ≥ p̂·ωi. But
∑

i x̂
i = ŷ +

∑
i ω

i, so

∑

i

p̂·x̂i = p̂·ŷ +
∑

i

p̂·ωi ≤
∑

i

p̂·ωi.

This implies p̂·x̂i = p̂·ωi. In other words, x̂i maximizes utility over the budget set.
Substituting back in, we find p̂·ŷ = 0, so ŷ maximizes profit.

Since market clearing holds, all that we have left to show is that p̂ ≫ 0. This follows
immediately since x̂i + eℓ ≻i x̂

i. The separation condition gives

p̂·x̂i + pℓ > p̂·ωi = p̂·x̂i.

Thus pℓ > 0 for every ℓ. �

Under our strong monotonicity hypothesis, all equilibria must have strictly positive
prices. There are other versions of the Debreu-Scarf Limit Theorem that hold under
weaker conditions.
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21.4.9 Edgeworth and the Existence of Walrasian Equilibria
The equivalence between Edgeworth equilibria and Walrasian equilibria suggests yet
another way to prove the existence of Walrasian equilibria. We can show that the set
of Edgeworth equilibria is non-empty.

Bondareva (1963) and Shapley (1967) developed a general condition (balancedness)
for cooperative games that implies the existence of a core. It is easy to show bal-

ancedness in the Walrasian setting, implying that each Ĉ(ER) is non-empty. Under
appropriate conditions, these sets are also compact. Since they are nested, they must
have a non-empty intersection, the set of Edgeworth equilibria.

A separation argument can be used to show that any Edgeworth equilibrium allocation
is a competitive equilibrium allocation as in Aliprantis, Brown, and Burkinshaw (1987).
Boyd and McKenzie (1993) applied this idea to a large class of infinite horizon models.
They first showed that Edgeworth equilibria were a type of quasi-equilibrium, then used
strong irreducibility to show that the quasi-equilibrium was actually an equilibrium.

These methods have one big advantage when dealing with infinite-dimensional com-
modity spaces. There may be several possible price spaces, and it may be unclear which
is the right one. Generating a price system via Edgeworth equilibria provides a natural
answer to which possible price space is the right one.

March 23, 2023

Copyright c©2023 by John H. Boyd III: Department of Economics, Florida International
University, Miami, FL 33199


