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1. Profit and Cost with a Single Output
2. Cost with Many Inputs
3. Cost Can be Minimized: The Cost Theorem
4. Maximizing Profit

Production of any product involves both inputs and outputs. Some intermediate
goods may be produced within the firm and later used in the production process.
For example, a coal mine may burn some of the coal produced in order to run their
machinery. For the most part we will not explicitly model those intermediate products
that are not marketed, although we will later consider the linear activity model where
that is possible. We usually treat the firm as a black box, looking only at its net inputs
and outputs and ignoring its internal structure.

OutputsInputs

Figure 6.0.1: Inputs flow into the firm, resulting in outputs coming out. Although we can
see how the inputs and outputs relate (e.g., production function), we don’t know the details
of what happens inside firm. It remains a black box.
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6.0.1 Introduction
Section one begins by studying production as in a micro principles class. We start with
a production function that tells how much of a single output can be produced from
a single input. Profit is revenue minus cost. Revenue is earned by selling the output
produced at the market price. Cost is the cost of the single input at its market price.

The firm chooses an input level that maximizes profit. Alternatively, we can rewrite
the firm’s problem in terms of output by introducing the cost function—giving cost as a
function of output. Profit is then maximized by choosing an appropriate level of output.

The next step is to allow multiple inputs as in intermediate microeconomics. In
section two, there is again a single output and a production function that describes the
production possibilities. We take the product of the vector of factor prices and the
vector of factor inputs to determine the cost of the inputs. For each output, we find
the cost minimizing input vector that produces that output. This determines the cost
function. We follow with some examples.

Section three takes a look at some properties of the cost function, the section ends
by considering homogeneous production, where the cost function factors into a ho-
mogeneous term and the unit cost function, the cost of producing a single unit of
output.

The final section considers profit when there are many inputs. We form profit using
the cost function. This divides profit maximization into two parts, finding the minimum
cost way to produce any quantity, and choosing the profit-maximizing quantity. We
pursue this method in section three. After looking at properties of the profit function,
we focus on homogeneous production functions by using the unit cost function and
homogeneity. When there are constant returns to scale, the unit cost function suffices
to analyze production.
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6.1 Price-taking Firms and Profit Maximization

We treat firms as profit-maximizers. This chapter focuses on the price-taking firm. We
will start with a firm that is a price-taker in both the input and output markets. Price-
taking firms operate under the assumption that they cannot affect the prices they pay or
receive. Price-taking firms are typically small compared to the market, but may be very
large in absolute terms. The price-taking firm may be a large oil company in a gigantic
market that every day resets its wholesale price based on the current price in the spot
market, or it may be a one or two person operation in a medium-sized market.1

We will start by considering a firm that uses a single input to produce a single output.
There are two market prices to consider, the output price p and the input price w.
A production function describes the firm’s production possibilities. It tells how much
output can be produced from a given input quantity z ≥ 0. Let f : R+ → R+ be
the production function. In this section we will assume that f is twice continuously
differentiable on R++, that the marginal product MP = f′ is strictly positive, and that
f(0) = 0.

Profit is
π(z) = pf(z) −wz.

Here pf(z) is the revenue earned from selling output f(z) at price p and wz is the cost
of using z amount of the input at price w.

1 Even a large firm such as Standard Oil (Amoco) acted as a price-taker in the wholesale gasoline market.
Every day, they determined their price by using the morning spot price for gasoline.
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6.1.1 A Simple Production Function
Let’s take a look at a simple production function with a single input and single output.

Example 6.1.1: Suppose the production function is f(z) = zγ/γ where γ > 0. As
required, the production function is twice continuously differentiable on R++, with
strictly positive marginal product MP = f′ = zγ−1. Moreover, f(0) = 0.

There are three cases of interest, depending on whether γ < 1, γ = 1, or γ > 1.
Case one has γ < 1. Here f′′ = (γ− 1)zγ−2 < 0 when z > 0. The marginal product

is decreasing in z. Then f′(0+) = +∞, ensuring that z = 0 is not a solution. Profit is

π(z) = p

(

zγ

γ

)

−wz and π′ = pzγ−1 −w.

Marginal profit will be negative for large z, so letting z → ∞ does not maximize
profit either. The profit-maximizing input z∗ is determined by the first-order conditions
p(z∗)γ−1 = w. The optimal input level is

z∗ =
( p

w

)1/(1−γ)

Then z∗ yields maximum profit

π∗ = γ−1(1 − γ)
( p

wγ

)1/(1−γ)

> 0.

The second case is the linear case γ = 1. Here the marginal product is constant,
MP = 1. Profit becomes π(z) = pz−wz = (p−w)z. If p > w, there is no maximum.
Profit increases without bound as z → ∞. If p < w, positive z always yields negative
profit. Profit is maximized only at z∗ = 0. Finally, if p = w, profit is zero regardless of
the input level. Any z ∈ R+ maximizes profit.

In the third case γ > 0. Then f′′ = (γ − 1)zγ−2 > 0, so the marginal product is
increasing in z. Profit is now π(z) = z(pzγ−1−w). As both terms of the product increase
without bound, there is no limit to how large profit may become. Therefor, there is no
solution to the profit maximization problem when γ > 1. ◭



6. PRODUCTION OF A SINGLE GOOD 5

6.1.2 Can Profit Be Maximized?
What did we find out about profit maximization in Example 6.1.1?

1. When marginal product was decreasing, it was always possible to maximize
profit.

2. When marginal product was constant, whether profit could be maximized de-
pended on both input and output prices, or more specificially, on their ratio. At
some price ratios the firm will not produce, at others profit is zero regardless of
output, and sometimes profit cannot be maximized at all.

3. Finally, profit maximization was just impossible when the marginal product was
increasing.

Similar results hold when there are multiple inputs and even multiple outputs. The
profit maximization problem will usually not have solutions in the face of persistent
increasing returns to scale, corresponding to increasing marginal product in Example
6.1.1. This is an environment where price-taking is not possible. In Chapter 18 we
will see that price-setting firms can maximize profit in the face of persistent increasing
marginal product.

What happens under constant returns to scale depends on prices. Some prices will
lead to no solution, others yield only the zero solution, and still others allow an infinity
of solutions.

Decreasing returns to scale will generally allow for a unique solution. When the
technology is not sufficiently productive. Such firms will not produce anything. We will
see that there are also cases with decreasing returns where profit maximization is not
possible.

Of course, there are other possibilities. There is no requirement that a production
function be either concave or convex. There might be regions of increasing and de-
creasing marginal product. Indeed, it is common when considering renewable resource
problems to use a production function that has increasing marginal product at low levels
of output, with diminishing marginal product at high level of output.
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6.1.3 The Cost Function
We can write the profit maximization problem in terms of output rather than input.
To do this, we introduce the cost function. It is easy to derive the cost function in the
single input, single output case when f′ is strictly increasing. Here output q and input
z related by the production function f, q = f(z). We can write input in terms of output
by inverting the production function, z = f−1(q).

Profit can then be written as a function of output q. Abusing notation, we write
π(q) = pq−wf−1(q).2 Here pq is the revenue and wf−1(q) is the cost of producing q,
the cost function c(w, q). Thus c(w, q) = wf−1(q). We compute the marginal cost

MC =
∂c

∂q
=

w

f′(q)

and its q-derivative
∂2c

∂q2
= −

wf′′(q)

[f′(q)]2
.

When the marginal product is increasing (f′′ > 0), marginal cost is decreasing in q,
while a decreasing marginal product yields increasing marginal cost. Of course, constant
marginal product translates to constant marginal cost. The first-order condition for profit
maximization is now that

p = MC =
∂c

∂q
,

price equals marginal cost. The marginal cost obeys

MC =
w

f′
=

w

MP
,

marginal cost is the factor price divided by the marginal product.

2 The abuse of notation is that π already has a definition in terms of input z, so it now has two definitions,
a possible source of confusion. Both notations should be regarded as temporary as we will later use π

for the profit function.
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6.2 Cost and Production

The formulation of profit in terms of cost is usually easier to use. It separates the
choice of output level from decisions about how to make that output. This allows easy
generalization to models with many inputs. The firm still sets price equal to marginal
cost to choose output. While the input choice becomes more complex, the choice of
output level remains the same, set price equal to marginal cost.

Using a cost function also allows us to more easily handle cases where the firm is a
price-taker in the input markets, but is a price-setter in the output market. The cost
function is unchanged. What does change is that the firm no longer faces a horizontal
demand curve, but must take into account the negatively sloped demand curve. In
order to sell more, the firm must lower its price. This is discussed further in Chapter 18.

As long as there is a single output, we can handle production with multiple inputs by
using a production function that accommodates multiple inputs. Suppose there are m
inputs. Let z ∈ R

m
+ be a vector of inputs and f : Rm

+ → R+ be a production function, a
function that describes how much output can be produced from any input vector. Here
we do not require that f be strictly increasing. This allows us to consider cases where
there are capacity constraints or where the marginal product may eventually become
negative at large input levels.

We solve the firm’s profit maximization problem by first constructing the cost function.
This requires finding the cheapest way to produce a given level of output. Once it knows
the cost function, the firm can choose the output level that maximizes profit. Since the
vector of factor prices is known, this choice implies a particular input demand vector.
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6.2.1 The Cost Minimization Problem
The cost function tells us the minimum cost required to produce any feasible quantity
of output. For this we need know nothing about the output market. In fact, a firm
may still be interested in cost minimization even if it is not a price-taker in the output
market. As long as the firm cannot affect factor prices, the cost minimization problem
remains the same even if the firm is a monopolist or oligopolist. We can even take this
a step further. Charities, universities, and other non-profit firms have an interest in cost
minimization as it enables them to do more with their scarce resources.

We consider a firm described by a production function f. Given a vector of factor
prices w ≫ 0 and a target output level q > 0, the firm’s cost minimization problem is
to find the cheapest way to produce output q or more. Cost minimization defines the
cost function c(w, q) via

c(w, q) = inf
z

w·z

s.t. f(z) ≥ q, z ≥ 0.

The use of the infimum rather than the minimum is important in two ways. If there
are no z with f(z) ≥ q we are taking the infimum of an empty set, so c(w, q) = +∞.
Secondly, even if there are z with f(z) ≥ q, there still may not be a minimum. Even so,
the infimum ensures that the cost function is still defined.

When the cost minimization problem has a solution, the set of such solutions is called
the conditional factor demand. We denote the set of conditional factor demand by
z(w, q). This correspondence will be treated as a function when it is always a singleton.3

3 Mathematically, the cost minimization problem is exactly the same as the consumer’s expenditure
minimization problem. The only changes are cosmetic. The production function has replaced the utility
function. Input prices have replaced the goods prices. The output level has replaced the utility level.
The conditional factor demands are analogous to the Hicksian demands.

The only important difference is connected with the fact that quantity is cardinal while utility is ordinal.
As a result, we will usually require that the production function be concave, whereas the utility function
was only required to be quasiconcave. This implies that the cost function is convex in q whereas the
expenditure function e(p, ū) need not have any concavity property where ū is concerned.
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6.2.2 Aside: The Indirect Production Function
An alternative method of thinking about the firms’ problem is to use the indirect
production function. The indirect production function has the same properties as the
indirect utility function, including full duality with the cost function and the ability to
recover the production function. It can be useful for deriving certain properties of factor
demand and the production function. The indirect production function is only rarely
applied to the firm’s profit maximization problem, as we usually assume the firm is not
subject to a budget constraint, but can finance its purchases of inputs as needed.

Given a production function f : Rm
+ → R+, a vector of input prices w ≫ 0, and a

budget m, we define the indirect production function g via the following maximization
problem.

g(w,m) = max
z

f(z)

s.t. w·z ≤ m

z ≥ 0.
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6.2.3 Cost Minimization: Leontief Production
Let’s work through the cost minimization problem when production has the Leontief
form.

Example 6.2.1: Let f(z) = mini{αizi} with each αi > 0. Since w ≫ 0, any excess
input will increase cost without increasing production. To produce q requires q ≤ αizi
for every i. To minimize cost we must use only the minimum amount of each input
needed to produce q, z∗i = q/αi. Then

c(w, q) =
∑

i

wiz
∗

i = q

(

∑

i

wi

αi

)

and the condition factor demand is z(w, q) = q(1/α1, . . . , 1/αm). ◭
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6.2.4 Cost Minimization with Smooth Production
When the problem has a little more structure (e.g., f is quasiconcave and f ∈ C1), we
can use Kuhn-Tucker to find the conditional factor demands. Define the Lagrangian by

L = w·z− λ
(

f(z) − q
)

− µ·z.

The first-order conditions are

wi = λ
∂f

∂zi
+ µi

for each i. Here each µi ≥ 0. This can be more compactly written w = λDf+µ with
µ ≥ 0. The solution must also obey the complementary slackness conditions µizi = 0
and λ

(

f(z) − q
)

= 0.
It follows that w ≥ λDf, or equivalently wi ≥ λ ∂f/∂zi = λMPi. When zi > 0, the

complementary slackness conditions imply

wi = λ
∂f

∂zi
= λMPi . (6.2.1)

Then if ∂f/∂zi > 0, we can write λ = wi/MPi > 0, so f(z) = q by complementary
slackness.

If both zi, zj 6= 0, we can eliminate λ from equation 6.2.1 by dividing the equation
for i by the equation for j, resulting in

wi

wj

=
∂f/∂zi

∂f/∂zj
=

MPi

MPj

= MRTSij (6.2.2)

where MRTS is the marginal rate of technical substitution, the negative of the slope of
the isoquant in i−j space.

In other words, at the cost minimizing point, the relative input price wi/wj is equal
to the marginal rate of technical substitution. We can get an alternative interpretation
of the same fact by rearranging equation 6.2.2 a bit to obtain

MPi

wi

=
MPj

wj

,

which tells us the marginal product of a dollar’s worth of input is the same for every
i and j used in production. Moreover, if the marginal value per dollar of one input is
lower than for the other inputs, it will not be used in production. Conversely, if an input
is not used in production, its marginal value per dollar will be no higher than than the
marginal value per dollar of those inputs that are in use.
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6.2.5 Derivatives of the Cost Function
When the cost function is differentiable, the Envelope Theorem allows us to interpret
the multiplier λ:

∂c

∂q
=

∂L

∂q
= λ.

In other words, the multiplier λ is the marginal cost. If ∂f/∂zi > 0, we can use equation
6.2.1 to obtain the marginal cost as

MC(q) =
∂c

∂q
=

wi

MPi

.

A second application of the Envelope Theorem yields

Dwc = DwL = z(w, q),

a result known as Shephard’s Lemma.
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6.2.6 Cost Minimization: Cobb-Douglas Production
We now solve the cost minimization problem for general Cobb-Douglas production.

Example 6.2.2: Let f(z) =
∏

i z
γi

i with γi > 0 for every i. Notice that zero input
of any factor yields zero output. Then for q > 0, we don’t have to worry about the
constraints z ≥ 0 as they cannot bind. The first-order conditions can then be written

wi = λγi

f(z)

zi
.

It follows that
wi

wj

=
γi

γj

zj

zi
,

allowing us to write

zi =

(

γi

γj

)(

wj

wi

)

zj.

Setting j = 1 and using the constraint f(z) = q, we obtain

q =
∏

i

(

γi

γ1

)γi
(

w1

wi

)γi

zγi

1 =

(

w1

γ1

)γ

zγ1

∏

i

(

γi

wi

)γi

where γ =
∑

i γi. The conditional factor demands are then

zi(w, q) =
γi

wi

q1/γ
∏

i

(

wi

γi

)γi/γ

.

and the cost function is

c(w, q) = γq1/γ
∏

i

(

wi

γi

)γi/γ

.

Finally, the marginal cost becomes

∂c

∂q
(w, q) = q(1−γ)/γ

∏

i

(

wi

γi

)γi/γ

.

It follows that if γ < 1, marginal cost is increasing, while if γ > 1, marginal cost is
falling. When γ < 1 there are decreasing returns to scale, while γ > 1 yields increasing
returns to scale.

It is easily verified that ∂c/∂wi = zi(w, q). ◭
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6.2.7 CES Production
We will do one more example of computing the cost function. This time we use a CES
production function.

Example 6.2.3: When there are m inputs, constant elasticity of substitution (CES)
production functions have the form

f(z) = κ

(

m∑

i=1

αiz
−ρ
i

)

−γ/ρ

where −1 < ρ < ∞ with ρ 6= 0, γ, κ > 0 and each αi > 0 with
∑

i αi = 1. When
ρ = −1 and γ = 1 we have linear production.

The CES production function is homogeneous of degree γ. The other parameters
are the substitution parameter ρ, the share parameters αi, and the scale factor κ.

What about the limiting and excluded cases for ρ? When ρ = −1, the production
function is f(z) = κ

(∑
i αizi

)γ
. When γ = 1, this reduces to linear production.

Letting ρ → 0 yields the Cobb-Douglas form κ
(∏

i z
αi

i

)γ
. To see this, take the

logarithm of f and use l’Hôpital’s rule.
Finally, letting ρ → ∞ yields κ

(

min{zi}
)γ

, which is equivalent to the Leontief form.
We obtain this by factoring min{zi} out of the sum. What remains is bounded between
some αi and 1. Then take the limit to obtain the result.

The above shows how flexible the CES family of production functions is. It includes
linear, Cobb-Douglas, and Leontief production functions as special cases.
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6.2.8 CES Cost Function SKIPPED

We now find the cost function and conditional factor demands. Since it is homoge-
neous of degree γ, c(w, q) = c(w, 1)q1/γ and z(w, q) = q1/γz(w, 1). We focus on
the case q = 1. The Lagrangian is L = w·z− λ(f(z) − 1) with first-order conditions

wi = αiλκγz
−ρ−1
i

[

∑

i

αiz
−ρ
i

]

−(γ+ρ)/ρ

We divide to eliminate λ (as well as κ), yielding

wi

wj

=
αiz

−ρ−1
i

αjz
−ρ−1
j

and so zj =

[

αjw1

α1wj

]
1

1+ρ

zi.

Substituting back in the constraint f(z) = 1, solving, and then scaling by q1/γ, we obtain
the conditional factor demands

zi(w, q) =
(q

κ

)1/γ
(

αi

wi

)
1

1+ρ

[

∑

i

(αiw
ρ
i )

1
1+ρ

]1/ρ

.

The cost function is

c(w, q) =
(q

κ

)1/γ
[

∑

i

(αiw
ρ
i )

1
1+ρ

]
1+ρ
ρ

.
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6.2.9 Elasticity of Substitution is Constant
The elasticity of substitution measures how the marginal rate of technical substitution
responds to changes in the ratio of factor inputs. It is defined by

σij = −
d ln(MRTSij)

d ln(zi/zj)
.

In the CES case,

MRTSij =
αi

αj

z−(1+ρ)
i

z−(1+ρ)
j

=
αi

αj

e−(1+ρ) ln(zi/zj).

so
ln MRTS = (αi/αj) − (1 + ρ) ln(zi/zj).

Then σij = 1+ρ. Linear production has infinite elasticity of substitution, Cobb-Douglas
has unit elasticity, and Leontief has zero elasticity of substitution. ◭
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6.3 The Cost Theorem

The firm’s cost minimization problem is mathematically identical to the consumer’s
expenditure minimization problem. In both cases, the isocost (isoexpenditure) lines
support the upper contour sets of the production (utility) function. We may prove
that the cost minimization problem has a solution in the same way we proved the
consumer’s expenditure minimization problem has a solution.

Theorem 6.2.4. Suppose f is continuous, w ≫ 0, and there is a z̄ with f(z̄) ≥ q. Then
the cost minimization problem has a solution

Proof. Since the minimum cannot cost more than using inputs z̄, the minimization
problem is equivalent to minimizing w·z over the compact set A = {z ∈ R

m
+ : w·z

≤ w·z̄ and f(z) ≥ q}. Since z 7→ w·z is a continuous function, it has a minimum on
A by the Weierstrass Theorem. �

The condition that f(z̄) ≥ q is quite mild. It merely says that production of q is
feasible. Without it, the cost minimization problem makes no sense, as is indicated by
the infimum of +∞. The condition that w ≫ 0 has more bite. It can be plausibly
violated. As with the consumer’s problem, if some price is zero, there may not be an
optimum (see Exercise 6.2.7).
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6.3.1 The Basic Cost Theorem
You should not be surprised to hear that the Basic Cost Theorem is very similar to the
Basic Expenditure Theorem of Chapter 5. After all, cost minimization and expenditure
minimization involve the same mathematical problem. Only the notation differs.

Economically, the important differences are connected with the fact that production
is cardinal while utility is ordinal. Because of that, concavity of the production function
is economically meaningful, while only quasiconcavity is meaningful for utility. The last
two parts of the Cost Theorem rely on the cardinality of the production function and
are not repeated in the Basic Expenditure Theorem we saw earlier in Chapter 5.

Basic Cost Theorem. Let f be a continuous production function. Let w ≫ 0 and
suppose there is z̄ ∈ R

m
+ with f(z̄) ≥ q. Then:

(1) There is a z(w, q) solving the cost minimization problem for factor prices w and
output q. If f is also strictly quasiconcave, then z is unique.

(2) The cost function c(w, q) is concave, upper semicontinuous and homogeneous
of degree one in w. In addition, w 7→ c(w, q) is continuous in w on the interior
of its effective domain and weakly increasing in both w and q. If f is strictly
quasiconcave, the conditional factor demand function z(w, q) is continuous in
w.

(3) Shephard’s Lemma. If c(w, q) is differentiable in w, then the conditional factor
demand obeys z(w, q) = Dwc(w, q).

(4) Law of Factor Demand. If zi ∈ z(wi, q) for i = 0, 1, then (z1 − z0)·(w1 −w0)
≤ 0.

(5) The conditional factor demand z(w, q) is homogeneous of degree zero in w.
(6) If c(w, q) is C2 in w, then z(w, q) is differentiable in w and the matrix

Dwz(w, q) = D2
w
c(w, q) is symmetric and negative semi-definite. Moreover,

[

Dwz(w, q)
]

w =
[

D2
w
c(w, q)

]

w = 0.
(7) If f is concave, then c(w, q) is convex in q.
(8) If f is homogeneous of degree γ > 0, then c(w, q) and z(w, q) are homogeneous

of degree 1/γ in q.

Property (3) was established by Shephard (1953) and is often referred to as Shephard’s
Lemma. The analogous property of the expenditure function is the Shephard-McKenzie
Lemma. Notice that properties (3)–(5) do not require a concave production function.



6. PRODUCTION OF A SINGLE GOOD 19

6.3.2 Proof of the Basic Cost Theorem

Basic Cost Theorem. Let f be a continuous production function. Let w ≫ 0 and
suppose there is z̄ ∈ R

m
+ with f(z̄) ≥ q. Then:

(1) There is a z(w, q) solving the cost minimization problem for factor prices w and
output q. If f is also strictly quasiconcave, then z is unique.

(2) The cost function c(w, q) is concave, upper semicontinuous and homogeneous
of degree one in w. In addition, w 7→ c(w, q) is continuous in w on the interior
of its effective domain and weakly increasing in both w and q. If f is strictly
quasiconcave, the conditional factor demand function z(w, q) is continuous in
w.

(3) Shephard’s Lemma. If c(w, q) is differentiable in w, then the conditional factor
demand obeys z(w, q) = Dwc(w, q).

(4) Law of Factor Demand. If zi ∈ z(wi, q) for i = 0, 1, then (z1−z0)·(w1−w0) ≤ 0.
(5) The conditional factor demand z(w, q) is homogeneous of degree zero in w.
(6) If c(w, q) is C2 in w, then z(w, q) is differentiable in w and the matrix Dz(w, q) =

D2c(w, q) is symmetric and negative semi-definite. Moreover,
[

Dz(w, q)
]

w =
[

D2c(w, q)
]

w = 0.
(7) If f is concave, then c(w, q) is convex in q.
(8) If f is homogeneous of degree γ > 0, then c(w, q) and z(w, q) are homogeneous

of degree 1/γ in q.

Proof. Parts (1)–(6) are essentially the same as the corresponding parts of the Basic
Expenditure Theorem from Chapter 5. Since the cost and expenditure functions are
mathematically the same, we can borrow the proofs from Chapter 5.

Part (1) combines Theorem 6.2.4 and Proposition 5.2.4. Part (2) is based on Theorems
5.1.5 and 33.6.4. Part (3) restates the Shephard-McKenzie Lemma. Part (4) is the Law
of Compensated Demand. Part (5) is part (1) of Theorem 5.2.9, and part (6) is the
remainder of Theorem 5.2.9.

For (7), let q′′ = αq + (1 − α)q′ with 0 < α < 1. If f(z) ≥ q and f(z′) ≥ q′, then
f(αz+ (1−α)z′) ≥ αf(z)+ (1−α)f(z′) ≥ q′′. Let z′′ = αz+ (1−α)z′. Then cq′′ (w) ≤
w·z′′ = αw·z+ (1−α)w·z′. As this holds for all z with f(z) ≥ q and z′ with f(z′) ≥ q′,
we may minimize the right-hand side, obtaining c(w, q′′) ≤ αc(w, q) + (1−α)c(w, q′),
proving convexity.

Part (8) is established in Proposition 6.2.5, which follows this theorem. �
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6.3.3 Cost Theorem: Homogeneous Production
Part (8) of the Cost Theorem tells us that homogeneity of the production function
implies homogeneity of both cost and the conditional factor demands. However, it
still lacks proof. This is remedied by Proposition 6.2.5. We only consider positively
homogeneous production because negative homogeneity would decrease output as
input increases.

Proposition 6.2.5. Suppose the production function f is homogeneous of degree γ > 0.
Then the cost function and conditional factor demands are homogeneous of degree 1/γ
in quantity q. That is, c(w, tq) = t1/γc(w, q) for t > 0 and z(w, tq) = t1/γz(w, q).
Moreover, we can write c(w, q) = q1/γ c(w, 1) and z(w, q) = q1/γ z(w, 1).

Proof. Here

c(w, tq) = min{w·z : f(z) ≥ tq}

= min{w·z : f(t−1/γz) ≥ q}

= min{t1/γw·z′ : f(z′) ≥ q}

= t1/γc(w, q)

where the substitution z′ = t−1/γz was used in the third line. This substitu-
tion tells us how the conditional factor demands relate in the two problems, thus
z(w, tq) = t1/γz(w, q). Now set t = q−1/γ to find c(w, q) = q1/γ c(w, 1) and
z(w, q) = q1/γ z(w, 1). �

Now that we know that degree γ > 0 homogeneity of production leads to homo-
geneity of cost, we can factor the cost function into two parts, isolating the effects of
scale (q) and factor prices (w). We write c(w, q) = q1/γc(w, 1).
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6.3.4 The Unit Cost Function
We define the unit cost function b(w) to be the cost of producing one unit of output
when input prices are w. In other words, b(w) = c(w, 1). Of course, by part (2) of the
Cost Theorem, the unit cost function is concave in w.

The important fact about the unit cost function is that when production is homoge-
neous of degree γ, we can reconstruct the cost function from the unit cost function.

c(w, q) = q1/γb(w).

Two such cases are the Cobb-Douglas cost function computed in example 6.2.2 and
the CES cost function from example 6.2.3. For Cobb-Douglas,

c(w, q) = q1/γ

[

γ
∏

i

(

wi

γi

)γi/γ
]

so

b(w) = γ
∏

i

(

wi

γi

)γi/γ

for Cobb-Douglas production functions.
The CES cost function has the same general form, q1/γb(w), but now

c(w, q) = q1/γ





κ−1/γ

[

∑

i

(αiw
ρ
i )

1
1+ρ

]
1+ρ
ρ





.

This means

b(w) = κ−1/γ

[

∑

i

(αiw
ρ
i )

1
1+ρ

]
1+ρ
ρ

for CES production functions.
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6.4 The Profit Maximization Problem

Now that we have the cost function under control, we return to the problem of profit
maximization. Suppose a firm is a price-taker, facing a fixed output price p. Profit
will be revenue minus cost, π(q) = pq − c(w, q). When the production function f is
concave in inputs the cost function is convex in q according to the Basic Cost Theorem
(8). This means profit is concave in output q. If positive profit is possible, q = 0 will not
maximize profit unless the marginal profit is always negative. In most cases, if profit is
also differentiable, we need only use the first-order condition to maximize profit. Thus
p = ∂c/∂q, price equals marginal cost.

Combining the profit maximization condition p = MC with equation 6.2.1, we find
that

VMPi = p× MPi = wi,

the value of the marginal product of k, (VMPi), which price times marginal product, is
equal to the factor price wi for every i = 1, . . . ,m.
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6.4.1 Profit Maximization: Separable Production
Let’s see how this works with a somewhat different production function, one that is
additive separable.

Example 6.3.1: Suppose the production function is additive separable. Then we
can write f(z) = f1(z1) + · · · + fm(zm). Provided we have an interior solution, the
profit maximization conditions become pf′i(zi) = wi. The factor demand for input i
is a function only of p and wi. Letting φi = (f′i)

−1, we can write zi = φi(wi/p) and
optimal output is q = f

(

φ1(w1/p), . . . , φL(wL/p)
)

.

For example, let fi(zi) = zγi

i , with 0 < γi < 1. Then φi(y) = (γi/y)1/(1−γi), so
zi = (γip/wi)1/(1−γi ) and q =

∑
i(γip/wi)γi/(1−γi).

If γi = 1/2 for all i, this becomes zi = (p/2wi)2 and q =
∑

i(p/2wi) =
(p/2)

∑
i 1/wi. The profit is

pq−
∑

i

wizi =
p2

2

∑

i

1

wi

−
p2

4

∑

i

1

wi

=
p2

4

∑

i

1

wi

.

◭
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6.4.2 Unit Cost and Profit Maximization
When the production function is homogeneous of degree γ > 0, we can factor the
cost function into a homogeneous function and the unit cost function. Not all of these
cost functions are compatible with profit maximization by a price-taking firm. There
are three cases to consider, γ > 1, γ < 1, and γ = 1.

We start with the case γ > 1. Returns to scale are increasing and marginal cost is
concave in q. The first-order conditions will then yield minimum profit, not maximum
profit. Indeed, when profit is π = pq− q1/γc(w, 1) and γ > 1, increasing the scale of
output will always increase profit. In fact, profit is pq − q1/γ = q1/γ[pq(γ−1)/γ − 1].
Taking the limit as q → ∞, and taking into account that p is positive, we find both
terms converge to +∞, implying that profit cannot be maximized.

Now consider the case γ < 1. Returns to scale are decreasing and profit maximization
will be possible. There is a unique interior profit-maximizing solution defined by the
first-order condition p = γqγ−1b(w). Thus

q∗ =

[

γb(w)

p

]
1

1−γ

maximizes profit.
The remaining case is γ = 1, constant returns to scale. Profit is pq − c(w, q) =

[p − b(w)]q where b(w) is the unit cost function. Profit is proportional to output. If
p > b(w), positive profit is possible. Profit cannot be maximized because higher output
always increases profit further. Profit can be increased without bound.

If positive profit is not possible, maximum profit is zero, controlled by a type of
complementary slackness condition [p − b(w)]q = 0. We refer to this as the zero-
profit condition. There are two ways the zero-profit condition can be satisfied when
p ≤ b(w). Whenever b(w) < p, profit will be negative if anything is produced. Profit
is maximized when q∗ = 0. In the second case, the zero profit condition b(w) = p is
satisfied. Then profit is always zero no matter what output level is chosen. Every output
quantity q∗ ≥ 0 maximizes profit.
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6.4.3 The Profit Function
For firms that are price-takers, with output price p > 0 and a vector of input prices
w ≫ 0, we define the profit function π(p,w)

π(p,w) = sup pq− c(w, q)

s.t. q ≥ 0.

As we have just seen, there may not be a q∗ that solves this problem. We may have a
supremum, but not a maximum.4

◮ Example 6.4.1: Profit with Homogeneous Production. The previous discussion estab-
lishes that if the production function is homogeneous of degree γ > 1, π(p,w) = +∞,
while if γ = 1, π(p,w) is either 0 or +∞. Finally, if γ < 1,

π(p,w) = pq∗ − c(w, q∗)

=

[

γb(w)

pγ

]
1

1−γ

−

[

γb(w)

pγ

]
γ

1−γ

b(w)

= (1 − γ)

[

γb(w)

pγ

]
1

1−γ

.

◭

4 We will define a more general profit function in Chapter 13.
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6.4.4 The Basic Profit Theorem
Just as we have theorems giving the basic properities of the cost and expenditure
functions, we also have a theorem describing some properties of the profit functions.
See also the Profit Theorem of Chapter 13. You’ll notice that the Basic Profit Theorem
does not assert the existence of a profit-maximizing solution. This should not surprise
you at this point as we have seen that it is easy to find cases where there is no such
solution.

Basic Profit Theorem. Let f : R
m
+ → R+ be a continuous production function. Let

p > 0 and w ≫ 0. Then:

(1) The profit function π(p,w) is convex, lower semicontinuous and homogeneous of
degree one in (p,w). In addition, π is continuous on the interior of its effective
domain, weakly increasing in p and weakly decreasing in w.

(2) Hotelling’s Lemma. If π(p,w) is differentiable, the optimal output is q∗(p,w) =
Dpπ(p,w) and the optimal input is z∗(p,w) = −Dwπ(p,w).

(3) Law of Supply. If (qi, zi) solve the profit maximization problem at (pi,wi) for
i = 0, 1, then [(p1,w1) − (p2,w2)]·[(q1,−z1) − (q, − z2)] ≥ 0.

(4) The optimal output q∗(p,w) and optimal input z∗(p,w) are both homogeneous
of degree zero in (p,w).

(5) If π(p,w) is C2 in (p,w), then y(p,w) =
(

q∗(p,w),−z∗(p,w)
)

is differentiable
in (p,w) and the matrix D(p,w)y(p,w) = D2

(p,w)π(p,w) is symmetric and positive

semi-definite. Moreover,
[

D(p,w)y(p,w)
]

(p,w) =
[

D2
(p,w)π(p,w)

]

(p,w) = 0.

Proof. Use the same methods we used to prove the Basic Expenditure Theorem and
Basic Cost Theorem. �

We refer to z
(

w, q∗(p,w)
)

as the unconditional factor demand and y(p,w) =
(

q∗(p,w),−z(p,w)
)

as the net supply.
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6.4.5 Profit Maximization: Cobb-Douglas Production SKIPPED

One homogeneous case is Cobb-Douglas production.
Example 6.3.3: From example 6.2.2 the cost function is

c(w, q) = q1/γ

[

γ
∏

i

(

wi

γi

)γi/γ
]

= q1/γ b(w),

resulting in a marginal cost of

∂c

∂q
=

1

γ
q(1−γ)/γ b(w).

The profit maximization problem will not have solutions if γ > 1 (check the second-
order conditions), while it will have an infinity of solutions if γ = 1 provided

p =
b(w)

γ
=

∏

i

(

wi

γi

)γi/γ

.

A higher output price results in no solution (infinite profits) while a lower price would
yield q = 0 as the solution.

There is a unique solution when γ < 1. It is

q∗(p,w) =

(

pγ

b(w)

)γ/(1−γ)

= pγ/(1−γ)
∏

i

(

γi

wi

)γi/(1−γ)

.

When γ < 1 the maximized profit is

π(q,w) = (1 − γ)p1/(1−γ)
∏

i

(

γi

wi

)γi/(1−γ)

and the corresponding unconditional factor demands are

∂π

∂wi

= p1/(1−γ)

(

γi

wi

)∏

i

(

γi

wi

)γi/(1−γ)

= zi
(

q∗(p,w),w
)

and firm supply is

∂π

∂p
= pγ/(1−γ)

∏

i

(

γi

wi

)γi/(1−γ)

.

◭
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6.4.6 Profit Maximization: Constant Returns to Scale SKIPPED

Constant returns to scale production functions can be handled in a slightly simpler
fashion. Because profits scale linearly with outputs, the profit-maximizing output must
satisfy the zero profit condition. If profit can be maximized, it will be zero. The
following example illustrates this, as does the γ = 1 case of Example 6.3.3.

Example 6.3.4: The Leontief production function is f(z) = min{αizi}. We found that
c(w, q) = q

(∑
i wi/αi

)

with conditional factor demand z(w, q) = q(1/α1, . . . , 1/αL).
The unit cost function is b(w) =

∑
i wi/αi.

As with all constant returns to scale models, the zero profit condition must be satisfied.
When p <

∑
i wi/αi, that means that optimal output is q∗ = 0. Alternatively, when

p =
∑

i wi/αi, any non-negative level of output yields the maximum profit, which is
zero. Finally, no q satisfies the zero profit condition when p >

∑
i wi/αi. ◭
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6.4.7 Unit Cost and Profit Maximization
We close the chapter with a graphical analysis of more general constant returns to scale
cases. Here cost is proportional to output.

Example 6.3.5: Suppose a CRS production function describes the production of a
good which sells for price p. Let w be the vector of input prices. We presume the
output is not also an input to this firm’s production. Let b(w) be the unit cost function.
Profit maximization will only be possible for factor prices w with p ≤ b(w). Since b is
concave, this is a convex region in factor price (w) space. In that case the maximum
profit is zero and the good will not be produced if p < b(w).

w1

w2

O

b
A

w∗

2

w∗

1

1

2

Figure 6.3.6: Each firm produces a unique product, but they use the same goods as inputs.
Curve 1 plots the points where p1 = b1(w) while curve 2 plots p2 = b2(w). In equilibrium,
only the factor prices in the cross-hatched area above both curves can occur. Infinite profit
is possible if the factor prices are below either curve. That is not consistent with equilibrium
in the output market. If factor prices are above a curve, that good is not produced. Thus
only good 1 is produced along the lower right portion of the heavy curve, and only good 2 is
produced on the upper left portion of the heavy curve. Both goods are produced only when
factor prices are at the intersection of both curves, point A = (w∗

1, w
∗

2).

We can now consider the problem of equilibrium factor prices. Suppose there are
multiple firms f = 1, . . . , F with unit cost bf and output price pf. Profit maximization
will be possible when pf ≤ bf(w). Prices with pf > bf(w) are not possible in equilib-
rium due to the possibility of infinite profit. Moreover, when pf < bf(w), firm f will not
produce. By plotting the curves pf = bf(w) in w-space, we can see how factor prices
determine which firms can produce in equilibrium. The two-firm, two-factor case is
illustrated in Figure 6.3.6. ◭
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