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Abstract. This paper presents some examples that clarify certain topolog-
ical and duality issues concerning the existence of equilibrium in infinite-
dimensional spaces. One is a finite-dimensional version of an example
due to Araujo (1985). It shows that equilibrium and individually rational
Pareto optima can fail to exist even in finite-dimensional spaces if certain
continuity conditions and compactness are not met. Araujo’s example is
not peculiar to infinite-dimensional economies. Re-examination of an ex-
ample of Zame (1987) shows that economically reasonable equilibria may
well exist even though prices fail to lie in the dual space specified by Zame.
This suggests that the theorems of Zame and others be read as giving con-
ditions for the existence of equilibrium prices in a particular dual, rather
than for existence of equilibrium in general.

Department of Economics, University of Rochester, Rochester, NY 14627

Email: boyj@troi.cc.rochester.edu (Internet)

Typeset using AMS-TEX



EQUILIBRIUM EXAMPLES 1

1. Introduction

Much of the literature on equilibria in infinite-dimensional commodity spaces has pointed to

the importance of using an appropriate topology and price space. However, rules for making

that choice have not been explicitly spelled out. This has led to some confusion regarding

the interpretation of some examples by Araujo (1985) and Zame (1987).

One of the alleged differences between finite and infinite dimensional spaces, the special

role of the Mackey topology in infinite dimensional models, is illusory. Araujo’s example is

supposed to highlight this difference. In fact, a similar example can be constructed even

when R2 is the commodity space. Araujo’s results really warn against economies where there

are no topologies that simultaneously yield a compact feasible set and upper semicontinuous

preferences. Although this difficulty is more common in infinite-dimensional spaces, my

example illustrates that there is nothing here that is peculiar to infinite-dimensional spaces.

A second stumbling block is whether to require that prices be in a previously given dual

(e.g., the dual under the above topology). Some of Zame’s examples of non-existence of equi-

libria do have equilibria, but the prices are not in Zame’s (dual) price spaces. Nonetheless,

these examples do have economically reasonable, non-dual, equilibrium prices that assign

values to everything in the consumption sets.

In this paper I illustrate some of the main principles involved in choosing an appropriate

commodity subspace, topologies and dual price space in the context of three examples. Two

of these are well-known, one by Araujo (1985) and one by Zame (1987). The other example

is a finite-dimensional version of Araujo’s example.
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2. Equilibrium Concepts

Any equilibrium model starts with two classes of agents—consumers and producers. Con-

sumers make their choices among the bundles that they can both conceive of and afford,

subject to survival constraints. They are not directly concerned with what is technically

feasible to produce.1 Producers are in the opposite circumstance—concerned with choosing

among what is possible using their resources and technology, not what is conceivable or

affordable to consumers.

In finite-dimensional models this distinction is adequately handled via consumption and

production sets within a single ambient space, Rn. In infinite-dimensional spaces there may

be many plausible ambient spaces, each with many plausible topologies. Some analysis

is required to determine the appropriate space and topology. Indeed, several spaces and

topologies, used in different ways, may eventually be necessary. For example, Jones (1987)

uses two different topologies in his existence theorem. Boyd and McKenzie (1993) use

multiple price spaces, ba and the space of sequences of prices in Rm.

Preferences and technology impose some restrictions on the appropriate spaces. At the

very least, they should contain all that is feasible. We must be able to associate a price with

any conceivable bundle, and highly-valued infeasible bundles should be too expensive for

the consumer. There is no formal requirement that all bundles in the ambient space have

well-defined prices, only those in the consumption and production sets.2

Zame (1987) has noted two types of problems.3 The first obstacle to overcome is the

existence of optimal allocations. This is typically accomplished by embedding the problem

in some appropriate space, and then choosing a topology where the feasible set is compact

1 This point was not sufficiently appreciated in the early literature. Bewley (1972) restricts the consumer
to affordable bundles in `∞ rather than all affordable bundles.
2 Even this can be weakened slightly, as in the equilibrium concept used by Boyd and McKenzie (1993).
3 Jones (1986) has examines many of the major differences between models with finitely and infinitely many
commodities.
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and preferences are continuous. This is often a trivial step in finite-dimensional economies.

In `∞, this puts very severe restrictions on preferences and technology, as pointed out by

Araujo (1985). This has been assumed to be a special feature of infinite-dimensional spaces.

In fact, the same sort of situation can easily arise even in R2, and is further examined in

Section Three.

The second sticking point is the existence of supporting prices—for both consumption and

production. This problem can be made less severe if we don’t insist that prices lie in the

dual of the space containing the consumption sets. This is illustrated in Section Four, where

one of Zame’s (1987) examples of non-existence of equilibrium is reconsidered. Although

Zame is correct in maintaining that there are equilibrium prices in the dual, the example

does have an obvious equilibrium.

3. The Existence of Pareto Optima

The first problem is the existence of individually rational Pareto optima. We start with a

space large enough to contain the economically relevant consumption bundles—those that

are feasible. We want a topology on that subspace which gives a compact feasible set while

retaining continuity of preferences. Typically, an appropriate weak topology can guarantee

compactness by the Banach-Alaoglu Theorem. Convex preferences allow considerable free-

dom here. Any topology between the weak and corresponding Mackey topologies has the

same closed, convex sets. Upper semicontinuity of preferences in any of these topologies

implies upper semicontinuity in all of them.

The Mackey topology is often portrayed as the correct topology to use, but there is nothing

magic about it. Rather, its use is based on the fact that Mackey upper semicontinuity and

weak upper semicontinuity are equivalent for convex preferences. The feasible set can easily

fail to be Mackey compact, even if it is weakly compact. For example, the unit ball in `2 is

weakly compact, but not Mackey (= norm) compact. The reason the Mackey topology is
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used is that it is the strongest topology where continuity implies weak upper semicontinuity

(for convex preferences). It’s easier to be continuous in the Mackey topology than in any

other such topology.

The focus on compactness of the feasible set is the key to understanding Araujo’s (1985)

example. In fact, they allow us to recast his example in a finite-dimensional setting. He

finds that the Mackey (`∞, `1) topology is appropriate for existence of equilibrium. Why?

What is so special about this topology and duality?

The principles above provide the answer. We want the feasible set to be compact. In his

case, compactness of the unit ball suffices. The Banach-Alaoglu Theorem informs us that the

unit ball is weak (`∞, `1) compact. Preferences must be weakly upper semicontinuous. The

weakest continuity condition that accomplishes this is Mackey (`∞, `1) upper semicontinuity.

This insures that individually rational Pareto optima exist. (Full continuity is actually

required for the existence of equilibria.)

When this kind of continuity fails, not only may equilibria fail to exist, but even individ-

ually rational Pareto optimal allocations may not exist. After reading Araujo’s paper, one

might conclude that infinite-dimensional spaces are quite different from Rn in this regard.

This is not the case. A similar phenomenon can occur even in R2. Impatience only enters

through the interpretation of the continuity condition in Araujo’s model.4 In R2, continuity

is divorced from such considerations. What is important, as in many economic models, is

that preferences be upper semicontinuous in a topology where the feasible set is compact.

The example that I present only barely fails this continuity test. One agent has continuous

preference on R2
+. The other agent’s preferences are continuous on R2

++, but only lower

semicontinuous on R2
+.

Let E and F denote locally convex vector spaces. If E is ordered, E+ is its positive cone.

Denote the weak, Mackey and strong topologies induced on E by F as σ(E, F ), τ(E, F )

4 This interpretation is stressed in Brown and Lewis (1981).
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and β(E, F ), respectively. When E = `∞, the tth component of a vector x is denoted x(t),

and et denotes the vector with et(s) = 0 for s 6= t and et(t) = 1. Araujo makes the following

assumptions:

Araujo Assumptions. The following 5 conditions hold:

(1) For every i, -i is a complete, transitive and reflexive preorder on `∞+ .

(2) For every i and every x ∈ `∞+ , {z ∈ `∞+ : x -i z} and {z ∈ `∞+ : x %i z} are τ -closed.

(3) For every i there exists a t(i) with x + λet(i) %i x for all x ∈ `∞ andλ > 0.

(4) There exists a constant a > 0 with ωi(t) ≥ a for all i and t.

(5) For every i and every x ∈ `∞+ , {z ∈ `∞+ : x -i z} is convex.

Araujo’s main results may be summarized in the following metatheorem.

Theorem 1. Let τ be a topology with σ(`∞, `1) ⊂ τ ⊂ β(`∞, `1). Then the following are

equivalent.

(1) Assumptions (1)–(5) imply an equilibrium exists.

(2) Assumptions (1), (2) and (5) imply an individually rational Pareto optimum exists.

(3) τ ⊂ τ(`∞, `1).

Araujo constucts an example to show (1) implies (3) as follows. If τ is as in Theorem 1,

and τ 6= σ(`∞, `1), then there is a τ -continuous linear functional p ≥ 0 that is purely finitely

additive. Let ω1 = ω2 obey assumption (4) with ω11 = 1. Set u1(x1) = x11 + p · x1 and

u2(x2) = r · x2 + p · x2 where r ∈ `1
+, rt > 0 for t > 1. Notice that agent 1 does not value

any specific goods from period 2 onwards. He only cares about them asymptotically because

p is purely finitely additive. Let {x̄1, x̄2} be a Pareto optimal allocation. Consumption at

any specific time t > 1 can be costlessly transferred to agent 2, who benefits from it. Thus

x̄1t = 0 for t > 1. As there are 2 units of consumption at time 1 available, u1(x̄1) ≤ 2. But

u1(ω1) = ω11 + p · ω1 > 2, so any Pareto optimum is not individually rational, and hence
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there cannot be an equilibrium.

In Araujo’s example, most goods are valueless to one of the agents, but that agent must

have a non-zero amount of one of them to have positive utility. The other agent values all

goods. Transferring some, but not all, of these valueless goods always results in a Pareto

improvement. As they cannot all be transferred without making the first agent worse off,

the Pareto optimum cannot be attained while maintaining individual rationality.

A similar phenomenon can even occur in R2. Define utility functions by u1(x, y) = y if

x > 0 and u1(x, y) = 0 if x = 0 and u2(x, y) = x+y. Note that u1 is concave since if x > 0 or

x′ > 0, u(αx+(1−α)x′, αy +(1−α)y′) = αy +(1−α)y′ ≥ αu(x, y)+ (1−α)u(x′, y′), while

if x = x′ = 0, u(αx + (1−α)x′, αy + (1−α)y′) = 0 = u(x, y) + (1−α)u(x′, y′). Give R2 the

discrete topology. Both utility functions are continuous, and both are weakly monotonic. It

follows that assumptions (1)–(3) are satisfied. Let the endowments be ω1 = ω2 = (1, 1). (Any

strictly positive endowments will do.) Then Araujo’s (4) is satisfied as well. Like the Araujo

example, this exchange economy has no individually rational Pareto optimal allocations. If

the allocation {(x1, y1), (x2, y2)} is individually rational, then u1(x1, y1) ≥ 1. Thus y1 > 0.

Now consider the allocation {(x1, y1/2), (x2, y2 + y1/2)}. This is a Pareto improvement over

the original allocation. Of course, this economy cannot have an equilibrium.

When the usual topology is applied to R2, this example just barely violates Araujo’s

assumptions. Agent 1’s utility function is continuous on the interior of the positive orthant,

and lower semicontinuous on the entire positive orthant. Upper semicontinuity fails only at

the lower edge of the positive orthant. Agent 2’s preferences are continuous in the usual

topology. This seemingly small failure of continuity on part of the boundary destroys any

possibility of an equilibrium.

It’s easy to find conditions that imply the existence of individually rational Pareto optima

on more general spaces. Let E be an arbitrary locally convex space. Weaken Araujo’s

assumptions as follows.
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Modified Araujo Assumptions. The following three conditions hold:

(1∗) For every i, -i is a transitive and reflexive preorder.

(2∗) For every i and every x ∈ E+, {z ∈ E+ : x -i z} is τ -closed.

(5∗) For every i and every x ∈ E+, {z ∈ E+ : x -i z} is convex.

Theorem 2. Suppose the set of feasible allocations F is τ -compact, and that assumptions

(1∗), (2∗) and (5∗) are satisfied. Then an individually rational Pareto optimum exists.

Proof. Given allocations x and y, define x - y if xi -i yi for every household i. Let S be

the collection of all y with y % ω. Define P(y) = {x ∈ F : y - x}. Let R be a chain in

S. If U is a finite subset of R, ∩y∈UP(y) = P(maxU) is non-empty by transitivity. Thus

{P(y) : y ∈ R} has the finite intersection property. Since each P(yi) is compact, ∩y∈R

is also non-empty. Any element of the intersection is an upper bound for R. By Zorn’s

Lemma, there is a maximal element of S. This is the desired individually rational Pareto

optimum. �

Corollary 1. Consider `∞. Suppose assumptions (1∗), (2∗) and (5∗) are satisfied with

σ(`∞, `1) ⊂ τ ⊂ τ(`∞, `1) then an individually rational Pareto optimum exists.

Proof. First note that F ⊂ B(0, ‖ω‖) is σ(`∞, `1)−compact by the Banach-Alaoglu The-

orem. Since preferences are convex, the sets P(y) are σ(`∞, `1)−closed. Hence the theorem

applies. �

Under some additional assumptions, Aliprantis, Brown and Burkinshaw (1987a, b) show

that compactness of the feasible set implies the core is non-empty.5

4. Equilibrium with Non-Dual Prices

I will only consider Zame’s first example, but similar considerations apply to his other

examples. In his first example, the consumption set is `1
+. There is one consumer with

5 Boyd and McKenzie (1993) show a similar result for capital accumulation models with survival constraints.
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utility function u(X) =
∑∞

t=1 x(t) and endowment ω = (2−2t). The production set is the

cone generated by the negative orthant and vectors of the form −ek + 2ek+1 where k is not

a power of two. As a result, no goods may be carried over to period 2s + 1 from period 2s.

Let 0 < k ≤ 2s−1 and consider t = k + 2s−1. Then c(t) ≤
∑k

j=1 2k−jω(j + 2s−1) =∑k
j=1 2(k−3j−2s) = 1

7
2(k−2s)[1− 2−3k]. It follows that c(t) grows no faster than z(t) = 2(k−2s).

The feasible set is contained in the Riesz ideal Z generated by z. The space Z is the

Riesz ideal recommended by Aliprantis, Brown and Burkinshaw (1987a, b). As Zame notes,

any equilibrium price system π must obey π(t) ≥ 2π(t + 1) for t not a power of 2 and

π(2s) = π(2s+1). This can be accomplished by setting π(k+2s−1) = 2(2s−1−k) for 0 < k ≤ 2s−1

(note π(2s) = 1). Thus π(t)z(t) ≤ 2−2s−1
when 2s−1 < t ≤ 2s. As this is summable, π is a

linear functional on Z, even though it is not continuous on all of `1.

Although not a linear functional, it still makes sense to think of this as a price system.

Some bundles in `1
+ may have positively infinite price, but these are outside the budget set.

The affordable bundles must be in `1 since π(t) ≥ 1. Utility makes sense on the entire

budget set. It is easy to see that the consumer only consumes at t = 2s, but is otherwise

indifferent about timing of consumption. The material balance condition ties it down so

ct = 2−1−2s−1
[8/7− 22s−1

/7] in equilibrium.

Since Zame has imposed the conditions that prices must be bounded (for unclear reasons),

he finds that there is no equilibrium. Nonetheless, the prices and allocations above yield a

perfectly reasonable equilibrium. The producer maximizes profits over his feasible set, and

the consumer maximizes utility over all conceivable, affordable consumption bundles.
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