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Summary. This paper provides sensitivity and duality results for continuous-time optimal capital accumulation models where
preferences belong to a class of recursive objectives. We combine the topology used by Becker, Boyd and Sung (1989) with a

controllability condition to demonstrate that optimal paths are continuous with respect to changes in both the initial capital

stock, and the rate of time preference. Under convexity and an interiority condition, we find the value function is differentiable,
and derive a multiplier equation for the supporting prices. Finally, under some mild additional conditions, we show that

supporting prices obeying the transversality and multiplier equations are both necessary and sufficient for an optimum.

1. Introduction

This paper provides sensitivity and duality results for continuous-time optimal capital ac-
cumulation models where the planner’s preferences are represented by a recursive objective
functional. Time preference is flexible. A previous paper (Becker, Boyd and Sung, 1989)
established the existence of optimal paths by choice of an appropriate topology. In this
paper, we combine the same topology with a controllability condition to demonstrate the
sensitivity of the optimal path with respect to changes in the initial endowment of capital,
and changes in the planner’s rate of time preference. Under convexity and an interiority
condition, we find the value function is differentiable, and derive a multiplier equation for the
supporting prices. Finally, under some mild additional conditions, we show that supporting
prices obeying the transversality and multiplier equations are necessary and sufficient for an
optimum.

Following Ramsey (1928), optimal growth theory has generally relied on models incor-
porating a fixed pure rate of time preference (possibly equal to zero). In this context, the
preference order of the planner is represented by a time-additive utility functional. This
type of objective has been criticized by various authors, dating back to Fisher (1930), on
the grounds that the pure rate of time preference should not be independent of the size and
shape of the consumption profile. When preferences are time-additive, this independence is
a direct consequence of a strong separability property. The marginal rate of substitution for
consumption at any two dates is independent of the rest of the consumption stream (Hicks,
1965, gives an extended critique along these lines). Lucas and Stokey (1984) argued that
the only basis for studying the time-additive case is its analytic tractability.
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Koopmans (1960) laid the foundation for ameliorating this deficiency of optimal growth
theory by introducing “time-stationary” or “recursive” preferences. Uzawa (1968) extended
Koopmans’ discrete-time concept of recursive utility to continuous-time. Following Uzawa’s
lead, Epstein and Hynes (1983) proposed another formulation of continuous-time recursive
utility. We consider a general multiple capital good model motivated by the Uzawa, Epstein
and Hynes formulation of continuous-time recursive utility. We cast our problem in terms
of a reduced-form model. This framework focuses on the vector of capital stocks and the
corresponding net investment flows. These stock and flow variables jointly determine the
consumption flow at each point in time. This formulation has much in common with the tra-
ditional fixed discount rate reduced-form model, which helps to clarify both the similarities
and differences between the fixed discount rate and recursive models.

Brock (1971) initiated studies of the sensitivity of the optimal path to changes in the
initial capital stock in a discrete-time one-sector setup. Nermuth (1978) considered the
problem in a multi-commodity discrete-time model. Takekuma (1980) and Balder (1983)
have provided continuous-time analogs of Nermuth’s results. In their models, an optimal
path varies continuously with respect to the initial stock. All of these authors stressed that
their results might have implications for proving turnpike theorems. Therefore, sensitivity
results can not be taken for granted.

Known turnpike results require additional assumptions. Epstein (1987a, b) has found
both local and global turnpike results for the continuous time model under an appropriate
normality condition. Benhabib, Jafarey and Nishimura (1988) and Benhabib, Majumdar and
Nishimura (1987) have done the same for discrete time, again under a normality hypothesis.
In contrast, the sensitivity analysis for discrete time is an immediate consequence of the
existence theory (Boyd, 1990).

We study two types of sensitivity: Sensitivity to changes in initial stocks, and sensitivity
to changes in the discount rate. We show that the feasible correspondence is closed and up-
per semicontinuous in the initial capital stock. Combined with a controllability condition,
this yields continuity of the value function, even in non-convex, multisector models. As in
Takekuma (1980), this implies the maximizer correspondence is closed and upper semicon-
tinuous. Even when restricted to the additively separable case, our results strengthen those
of Balder to permit non-convexities in both the reduced-form felicity and the technology. We
also prove a sensitivity theorem for parametric changes in the discounting function entering
the recursive objective.

Duality theory for recursive utility has remained virtually unexplored. Typically, a twice
continuously differentiable value function is posited (Epstein and Hynes, 1983; Chang,
1987).1 This is not required for the duality theory. Concavity and interiority suffice for
the existence of supporting prices. Under additional assumptions, related to those of Ben-
veniste and Scheinkman (1982), supporting prices that satisfy the transversality condition
are necessary for a path to be optimal. As usual, the price equations are derived via a per-
turbation argument. The sufficiency argument requires an additional mild assumption. The
demonstration of sufficiency is a bit unusual. Unlike the additively separable case, direct
calculation of the change in utility on an alternative path cannot easily be carried through.

1Santos (1990) reports sufficient conditions for a twice continuously differentiable value function in the
traditional time additive separable utility framework.
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A major difficulty is that concavity of utility is not defined pointwise when preferences are
not additively separable. However, the transversality condition can still be used to show
that all directional derivatives are non-positive, which implies optimality.

The paper is organized as follows: Section Two sets up the model, Section Three inves-
tigates the properties of feasible paths, Section Four examines the sensitivity of the value
function and optimal paths to changes in the initial stock, Section Five examines changes
in the discount rate, Section Six contains the duality theory. Final comments are in Section
Seven.

2. The Model

There are m capital goods in the general model economy. The technology is a measurable
set Ω ⊂ R × Rm × Rm. We assume that the t−sections of Ω, {(k, y) : (t, k, y) ∈ Ω}, are
non-empty for every t ≥ 0, and that {k : (t, k, y) ∈ Ω for some y ∈ Rm} is closed for every
t ≥ 0.2 Define D = {(t, k) : (t, k, y) ∈ Ω for some y} and G(t, k) = {y : (t, k, y) ∈ Ω}.
The investment correspondence G thus has domain D. Given capital stock k at time t, any
y ∈ G(t, k) can be accumulated as additional capital. The investment correspondence is
allowed to vary with time. The programming problem is defined for a given felicity function
L and discounting function R, both mapping Ω to R, and an assigned initial capital stock
x ∈ X where X ⊂ Rm

+ is the set of potential initial capital stocks. Formally, an economy
is a quadruple (Ω, L,R, x) with x ≥ 0 that satisfies the Technology and Felicity Conditions
given below.

A capital accumulation program, k, is an absolutely continuous function from R+ to
Rm

+ , denoted k ∈ A.3 It may be represented as the integral of its derivative k̇ by k(t) =

k(0) +
∫ t

0
k̇(s) ds. Further, the derivative of k not only exists almost everywhere, but it is

locally integrable – its integral over any compact set is finite. We denote this by k ∈ L1
loc.

Define the set of attainable (admissible) programs from initial stock x , A(x) by

A(x) = {k ∈ A : k̇ ∈ G(t, k) a.e., 0 ≤ k(0) ≤ x}.

Let D(t) = {k : (t, k) ∈ D for some t}. We call the technology convex if X is convex and
the section {(k, y) : y ∈ G(t, k)} is convex for each t. In this case, A(x) is convex for each
x ∈ X, and the correspondence x → A(x) is a concave process in the sense of Rockafellar
(1967), i.e. λA(x) + (1− λ)A(x′) ⊂ A(λx+ (1− λ)x′) for 0 ≤ λ ≤ 1 whenever x, x′ ∈ X.

The recursive objective functional , I, is given by

I(k) = −
∫ ∞

0

L(t, k, k̇) exp
(∫ t

0
R(s, k, k̇) ds

)
dt,

2This assumption, as well as measurability of Ω should also be assumed in Becker, Boyd and Sung (1989).
Balder (1990) gives a counter-example when they are omitted.

3More formally, a function k is absolutely continuous if for every T and ε > 0, there is a δ with
∑m

i=1 |k(ti)−
k(si)| < ε whenever 0 ≤ t1 ≤ s1 ≤ · · · ≤ tm ≤ sm ≤ T with

∑m
i=1 |ti − si| < δ. Any such function may be

represented as the integral of its derivative. Conversely, any locally integrable function f has an absolutely
continuous integral k(t) =

∫ t

0
f(s) ds.
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and the programming problem, P (x), is defined by

P (x) : J(x) = sup{I(k) : k ∈ A(x)}.

Here J is the value function. An admissible program k∗ is an optimal solution to
P (x) if k∗ ∈ A(x) and I(k∗) = J(x). Similarly, we define J(x, T ) as the supremum of

−
∫∞
T
L(t, k, k̇) exp(

∫ t
T
R(s, k, k̇) ds) dt over the set of feasible paths with initial condition

k(T ) = x.
Define a map k →Mk by the formula

Mk(t) = −L(t, k(t), k̇(t)) exp

∫ t

0

R(s, k(s), k̇(s)) ds.

This map is concave if for each α ∈ [0, 1], for any k, k′ with kα = αk + (1− α)k′, it follows
that

Mkα(t) ≥ αMk(t) + (1− α)Mk′(t)

holds for almost every t. The objective functional is concave when the map M is concave.
If the technology is also convex, we say the problem or the economy is concave. A concave
problem yields a value function that is concave and thus continuous on the relative interior
of its domain X.

Technology Conditions.

i) G(t, k) is compact and convex for each (t, k) and k → G(t, k) is upper semicontinuous
for each t.

ii) For all x ∈ X, there is a µx ∈ L1
loc such that |k̇| ≤ µx a.e. whenever k ∈ A(x).

iii) A(0) 6= ∅.

Note that the non-triviality condition (iii) implies A(x) 6= ∅ for all x ∈ X. In many
economic applications inaction is always possible by virtue of free disposal, thus 0 ∈ G(t, k).
Condition (iii) immediately follows since k(t) = x is feasible.

Felicity Conditions.

i) L: Ω→ R and R: Ω→ R are continuous on Ω and convex in y ∈ G(t, k) for each fixed
(t, k) ∈ D.

ii) L ≥ 0 and there exists a non-positive function ρx ∈ L1
loc such that R(t, k(t), k̇(t)) ≥

ρx(t) for all k ∈ A(x).
iii) There is a program k ∈ A(x) such that I(k) > −∞.

We will refer to L as the felicity function and R as the discounting function. Becker, Boyd
and Sung (1989) found that optimal programs exist whenever the felicity and technology
conditions are satisfied. Carlson (1990) contains an existence result for a different class of
similar problems. Both results appear as special cases in Balder (1990).

Henceforth, we denote the amount of discounting along a path k from time s to time t by
D(t, s) = exp(

∫ t
s
R(τ, k(τ), k̇(τ)) dτ) and discounting from time 0 by D(t) = D(t, 0). Thus

I(k) = −
∫∞

0
LD dt.
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2.1. The One-Sector Model

One technology satisfying the technology conditions is the one-sector growth model.4 De-
note consumption by c(t), capital by k(t) and net investment by k̇(t). Assume the gross
production function f : R2

+ → R+ is continuous in (k, y) and increasing in k. Further,
there is a continuous function τ(t) with 0 ≤ f(k, t) ≤ τ(t)(1 + k) for k ≥ 0. This
growth condition is automatically satisfied if f is concave in k. Capital depreciates at
rate β ∈ [0, 1], yielding a net production function g(k, t) = f(k, t) − βk. Consumption c is

given by c(t) = g(k, t)− k̇(t) = f(k(t), t)− βk(t)− k̇(t). Define G(t, k) = [−βk, g(k, t)] and
Ω = {(t, k, y) ∈ R+ × Rm

+ × Rm : y ∈ G(t, k)}. This defines the standard technology .
Without loss of generality, we may take β = 0. This is accomplished by using undepreci-

ated capital defined by K(t) = eβtk(t). Undepreciated capital obeys 0 ≤ K ≤ F (K, t) where
F (K, t) = eβtf(e−βtK, t) is undepreciated gross output. Since F obeys the growth condition
whenever f does, and since K → e−βtK is continuous in C, it is enough to consider the
no-depreciation case (β = 0).

The one-sector framework encompasses numerous technologies. These range from affine
production functions f(k) = rk + w with r > β and w ≥ 0 (Uzawa, 1968; Nairay, 1984) to
non-convex technologies. One such example would be f(k) = π/4 + arctan(k − 1). Tech-
nologies with stock non-convexities are admissible; flow non-convexities are inadmissible.

Epstein (1983, 1987b) has introduced generalizations of Uzawa’s (1968) recursive utility
function. A felicity function, u, and a discounting function, v, are defined in terms of con-
sumption c. We assume the felicity function is negative, continuous, concave and increasing
with u(0) > −∞ and the discounting function is continuous, concave and increasing with
v(c) ≥ v(0) = ρ > 0 for all c ≥ 0. Now take L(t, k, y) = −u(f(k, t)−y−βk) and R(t, k, y) =
−v(f(k, t)− y − βk). These objectives are a continuous-time version of Koopmans’ (1960)
recursive preferences. These objectives are bounded below by I(0) = u(0)/ρ > −∞.

Examples of admissible discounting functions include: v(c) = 1 + arctan cα for 0 < α ≤ 1;
v(c) = 1+arcsec (1+c), and v(c) = 2−e−c. The first two are bounded from above by 1+π/2,
the last by 2. In all of these cases ρ = 1. Other examples of discounting functions may be
unbounded above, for example, v(c) = 1 + log(1 + c) and v(c) = 1 + cα, 0 < α ≤ 1. When
u is a constant, we obtain the Epstein-Hynes (1983) utility function. We will restrict our
attention to felicity and discounting functions that satisfy the Felicity Conditions. However,
Nairay (1984) introduces a transformation that can recast certain other types of felicity
functions, in particular, those considered by Uzawa (1968), into our framework.

Production functions and objectives meeting the above conditions define the standard
recursive one sector model (f, β, u, v, x).

3. Properties of Feasible Sets

Two equivalent modes of convergence are particularly important for our feasible set. Both
are defined on the space A of absolutely continuous functions from R+ to Rm. The C
topology is the topology of uniform convergence on compact subsets (the compact-open
topology) and is defined by the family of norms ‖f‖∞,T = sup{|f(t)| : 0 ≤ t ≤ T} for

4See Becker, Boyd and Sung (1989) for details on this.



6 ROBERT A. BECKER AND JOHN H. BOYD III

T = 1, 2, . . . , where | · | is any of the equivalent Euclidean norms on Rm. Under these norms,
C is a complete, countably-normed space and thus a Fréchet space.

The second topology is obtained by focusing on the flows rather than stocks. When f is
absolutely continuous, its derivative is locally integrable. Consider (L1

loc)
′ = {f ∈ L∞ : f

has compact support}. For (ϕ0, ϕ1) ∈ R⊕ (L1
loc)
′, define 〈ϕ, f〉 = ϕ0f(0) +

∫∞
0
ϕ1(s)f(s) ds

recalling that ϕ1 has compact support. This duality defines a weak topology on A. Curiously,
although any sequence that converges in the weak topology on A converges in the C topology,
weakly convergent nets need not converge in the C topology. We will be working with
a subspace F(µ), defined by a growth condition, where the two topologies actually are
equivalent. For each µ ∈ L1

loc with µ ≥ 0, define the subspace F(µ) by F(µ) = {k ∈ A :

|k̇| ≤ µ}. Becker, Boyd and Sung (1989) investigated these topologies in detail. They found:

Proposition 1. On F(µ), the C and weak A topologies are equivalent. Further, F(µ) is
compact and this topology is metrizable.

Proposition 2. Suppose the technology and felicity conditions are satisfied and kn → k
with k̇n ∈ G(kn, t) a.e. Then k̇ ∈ G(k, t) a.e.

3.1. Sensitivity of the Feasible Set

One easy, but important, application of these techniques is to establish upper semicontinuity
of the feasible correspondence.

Lemma 1. When the technology conditions are satisfied, x → A(x) is a closed, upper
semicontinuous correspondence.

Proof. Let xn → x. For n large enough, all of the A(xn) are contained in the compact
set A(x + 1). It is enough to show the correspondences are closed. Let kn ∈ A(xn) with

kn → k. As kn(0)→ k(0), 0 ≤ k(0) ≤ x. Further, since kn(t)→ k(t) and k̇n ∈ G(t, kn) a.e.,
k ∈ G(t, k) a.e. by Proposition 2. Thus k ∈ A(x). �

In general, we shall also need the following strong controllability (reachability) condition.
This condition says that if we start near a path k, we can catch up to it.

Strong Controllability at k. Let x = k(0). There exists a T such that for all ε > 0 there

is a δ such that whenever |x−y| < δ, there is a k′ ∈ A(y) with |(k(t), k̇(t))−(k′(t), k̇′(t))| < ε
for all t and k(t) = k′(t) for t ≥ T .

Generally speaking, we expect the optimal path to be strongly controllable. Intuitively,
some consumption must occur on the optimal path. Thus by sacrificing consumption, we
can catch up to it even if our initial stock is lower. We can easily see this when the path is
interior at the start. Consider Benveniste and Scheinkman’s (1979) interiority condition.

Interiority at k. There are ε, T > 0 such that ż(t) ∈ G(t, z(t)) whenever max{‖k −
z‖∞,T , ‖k̇ − ż‖∞,T} < ε.
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Lemma 2. Whenever interiority holds at k, k is strongly controllable.

Proof. Let ε > 0. Perturb the path k as follows. Define k(t|y) = k(t) + (1− t/T )(y − x)

for 0 ≤ t ≤ T and k(t|y) = k(t) otherwise. Then k̇(t|y) = k̇(t) − (y − x)/T and k(0|y) =
k(0) + (y − x) = y. Choose any δ < ε, εT . Then k(t|y) is feasible from x by the interiority
condition and is the desired k′. �

4. Changes in Initial Stocks

When the value function is continuous, these techniques can be used for sensitivity analysis.
There are various sensitivity questions to consider. In this section, we study the effect of
changes in the initial stock on the the value function and optimal paths.

We first consider the case where the value function is continuous. This analysis is rem-
iniscent of Takekuma’s (1980) and Balder’s (1983) treatment of the additively separable
case. Although concavity is the easiest way to obtain continuity of the value function, it
is not required. Various controllability conditions yield a continuous value function. In
fact, as Balder demonstrates (1983, Appendix B), convexity of the technology is a type of
controllability condition.

If the economy is concave, the value function is concave and so continuous. Thus the
maximizer correspondence is upper semicontinuous. When the objective is strictly concave,
the maximizer is unique, and so a continuous function.

Before proceeding, we require information about continuity of the objective. Becker, Boyd
and Sung (1989) prove the recursive objective functional is upper semicontinuous.

Upper Semicontinuity Theorem. Suppose the Felicity and Technology Conditions are
satisfied and kn → k weakly in A(x). Then lim supn→∞ I(kn) ≤ I(k).

4.1. Continuity of the Value Function

There are two ways to obtain continuity of the value function. The first requires the problem
be concave. The value function is then concave, and hence continuous. The second does not
require a concave economy, but uses strong controllability instead.

Theorem (Continuity of the Value Function). Suppose (Ω, L,R, x) is an economy and
either the optimal path from x is strongly controllable, or the economy is concave with x in
the relative interior of X. Then the value function is continuous at x.

Proof. First suppose the economy is concave. As I is concave and the technology is
convex, standard arguments show the value function is a concave function on its domain X.
It immediately follows that the value function is continuous on the relative interior of its
domain.

Suppose strong controllability holds and consider yn = x− u/n and zn = x + u/n where
u = (1, . . . , 1). For n large enough, k(t|yn) is feasible from yn. Further, I(k(t|yn)) ≤ J(yn) ≤
J(x) ≤ J(zn) by the monotonicity of the feasible set. It suffices to show limn→∞ J(zn) =
limn→∞ I(k(t|yn)) = J(x).
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First we consider convergence from above. Let kn be optimal from zn. Take any subse-
quence that converges. Use kn to denote the subsequence and let its limit be k0. We know
k0 ∈ A(x) since the correspondence A(x) is closed (Lemma 1). By the Upper Semicontinuity
Theorem, limn→∞ J(zn) = lim supn→∞ I(kn) ≤ I(k0) ≤ J(x). But as J is clearly increasing,
J(zn) ≥ J(x), and so limn→∞ J(zn) = J(x).

Now consider convergence from below. For n large let kn be given by the strong control-
lability condition. Define Ln = L(t, kn(t), k̇n(t)), L = L(t, k(t), k̇(t)) and define Dn and D
similarly.

Since kn(t) = k(t) for t ≥ T ,

|I(kn)− I(k)| =
∫ T

0

[LnDn − LD] dt+ [Dn(T )−D(T )]J(T, k(T )).

For any ε, |(k, k̇)− (kn, k̇n)| < ε for n sufficiently large. As R and L are continuous in k,
both terms converge to zero as n→∞. Thus I(kn)→ I(k) = J(k), as required. �

4.2. Sensitivity of Maximizers

We can now combine the continuity of the value function with the upper semicontinuity of the
feasible correspondence to show that the maximizer correspondence is upper semicontinuous.

Stock Sensitivity Theorem. Suppose (Ω, L,R, x) is an economy with J continuous. Then
the maximizer correspondence x → m(x) = {k ∈ A(x) : I(k) = J(x)} is closed and upper
semicontinuous.

Proof. Once again, it suffices to show m is closed since compactness will yield upper
semicontinuity. Let xn → x and kn → k with kn ∈ m(xn). By Lemma 2, k ∈ A(x). The
Upper Semicontinuity Theorem shows J(x) = lim supn→∞ J(xn) = lim supn→∞ I(kn) ≤ I(k).
But I(k) ≤ J(x), thus I(k) = J(x) and k ∈m(x). �

Corollary 1. Suppose (Ω, L,R, x) is an economy and either the optimal path from x is
strongly controllable, or the economy is concave with x in the relative interior of X. Then
the maximizer correspondence is closed and upper semicontinuous.

Of course, if the objective is strictly concave, the maximizer will be unique, and the
maximizer correspondence a continuous function.

4.3. Application: The One-Sector Model

Continuity of the value function and closedness of the maximizer correspondence always
obtain in the standard one-sector model. Any path with non-zero consumption is strongly
controllable. Here the intuition carries through exactly. A small deficiency in capital can be
made up by remaining on the path of pure accumulation a bit longer.

Controllability Lemma. Suppose c = f(k, t)− k is a feasible path in the standard model
(f, β, u, v, x). Then k is strongly controllable.

Proof. If y > x, k is feasible, so k′ = k will do. Thus we assume y < x. Set T = 1+inf(ess-
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supp c)5 and let ε > 0 be arbitrary. Since c ∈ L1
loc, we may use the Carathéodory Existence

Theorem to obtain an absolutely continuous solution to k̇ = f(k, t) − c(t), k(0) = y for
any y (Coddington and Levinson, 1955, pg. 43). Denote this solution by k(t|y). Since f is
increasing, the solution is unique and increasing in y as well as t. Thus k(t|y) ≤ k(t|x) for
all t. Of course, k(t|x) = k(t).

Next, we modify k(t|y) so that it catches up to k by converting some of the available
consumption (up to ε) to investment. In this way, we can catch up by an amount ϕ(t) =∫ t
T−1

max{ε, c(t)} dt by time t. Choose δ0 so that |f(k, t) − f(k∗, t)| < ε for 0 ≤ t ≤ T
whenever |k − k∗| < δ0. Then choose δ with k(T |x) − k(T |y) ≤ min{ϕ(T ), δ0} whenever
|y−x| < δ (Coddington and Levinson, pg. 58). For 0 ≤ t ≤ T − 1, consumption is zero and

|k̇(t)− k̇(t|y)| = |f(k(t))− f(k(t|y))| ≤ ε. Now fix y with |y− x| < δ. Since ϕ is continuous
with 0 = ϕ(T − 1) ≤ k(T − 1|x)− k(T − 1|y) and ϕ(T ) ≥ k(T |x)− k(T |y), there is a largest
δ1, 0 ≤ δ1 ≤ 1 with ϕ(T − δ1) = k(T − δ1|x)− k(T − δ1|y). Define k′(t) by k′(0) = y and

k̇′(t) =


k̇(t|y) 0 ≤ t ≤ T − 1

k̇(t|y) + max{ε, c(t)} T − 1 ≤ t ≤ T − δ1

k̇(t) T − δ1 < t.

Since k′(T − δ1) = k(T − δ1|y) +ϕ(T − δ1) = k(T − δ1), k′(t) = k(t) for t ≥ T ≥ T − δ1. For
0 ≤ t ≤ T − δ1, k(t|y) ≤ k′(t) ≤ k(t) on [0, T − δ1]. Combining these shows |k(t)− k′(t)| ≤ ε

for all t. Now |k̇′ − k| ≤ |f(k, t) − f(k′, t)| < ε on [0, T − 1], and |k̇ − k̇′| = |k̇(t) −
max{c, ε} − k̇(t|y)| ≤ 2ε on [T − 1, T − δ1]. All that remains is to note that k′ is feasible

since k̇′(t) = k̇(t|y) + max{ε, c} ≤ f(k(t|y), t) ≤ f(k′(t), t) on [T − 1, T − δ1]. �

Since consumption is not indentically zero on the optimal path for any x > 0, we have:

Corollary 2. The value function for the standard one-sector model is continuous, and the
maximizer correspondence is closed and upper semicontinuous.

5. Parametric Changes in Discounting

This section addresses the effect of parametric changes of the felicity function on the value
function and optimal paths. The theorem examines continuous parametric changes in the
discounting function R for both convex and non-convex technologies. Consider a family Rα

of discounting functions with α in some parameter space. One important family of this
type is given by Rα = −(α + v(c)) where v is an Epstein-Hynes discounting function. This
parametric change adjusts the rate of impatience and is analogous to varying the discount
factor in the additively separable model.

Discounting Sensitivity Theorem. Given parametrized economies (Ω, L,Rα, x), suppose

|Rα(t, k(t), k̇(t)) − R0(t, k(t), k̇(t))| → 0 uniformly in (t, k) ∈ R+ × A(x) as α → α0 and
Rα ≤ ρ < 0 for α near α0 with Leρt uniformly integrable. Then Jα(x)→ J0(x).

5The essential support of c is defined by ess-supp c = {t :every neighborhood of t has a subset of positive
measure where c 6= 0}.
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Proof. For k ∈ A(x), R0 ≤ ρ, thus
∫ t

0
R0(t, k, k̇) ≤ ρt. Hence

|Iα(k)− I0(k)| ≤
∫ ∞

0

Leρt|1− exp(
∫ t

0
(Rα −R0) ds)| dt

≤
∫ ∞

0

Leρt(eεt − e−εt) dt

for α near α0. Thus Iα(k)→ I(k) uniformly on A(x).
Now take kα and k0 such that Iα(kα) = Jα(x) and I0(k0) = J0(x). Note Iα(k0) ≤ Jα(x).

Thus lim Iα(k0) = I0(k0) ≤ lim inf Jα(x). Also, I0(kα) ≤ I0(k0) = J0(x) and |Iα(kα) −
I0(kα)| → 0 uniformly, so lim sup Jα(x) = lim sup Iα(kα) ≤ J0(x). Therefore lim Jα(x) =
J0(x). �

The proof of the Stock Sensitivity Theorem now yields:

Corollary 3. Under the conditions of the Stock Sensitivity Theorem, α→ mα(x) is closed.
Further, if I is strictly concave and the technology is convex, α → mα(x) is a continuous
function.

Proof. Let αn → α0 and let kn be optimal given αn with kn → k0. As A(x) is closed,
k0 is feasible. But as In(kn) = Jn(x) → J0(x) and In(k) → I(k0), k0 is a maximizer for I0.
Thus α→ mα(x) is closed.

If I is strictly concave and the technology is convex, the maximizer is unique. Therefore
α→ mα(x) is a continuous function. �

5.1. Application: Uncertain Lifetimes

One situation where the Discounting Sensitivity Theorem applies is under an uncertain
lifetime. Consider an Epstein-Hynes discounting function and suppose the probability of
death is given by a continuous density p(t). The probability of dying by time s is P (s) =∫ s

0
p(τ) dτ . Treating death as a zero consumption state (Yaari, 1965; Blanchard, 1985;

Chang, 1986; Boukas, Haurie and Michel, 1990), expected utility EU(C) is then

−
∫ ∞

0

p(s) ds

[∫ s

0

exp
(
−
∫ t

0
v(c) dτ

)
dt+

∫ ∞
0

exp
(
−
∫ s

0
v(c) dτ −

∫ t
s
v(0) dτ

)
dt

]
Integrating the first term by parts and integrating the second term yields, after some re-
arrangement,

EU(C) = −
∫ ∞

0

[1− P (s) + p(s)/v(0)] exp(−
∫ s

0
v(c) dτ) ds

where P (s) =
∫ t

0
p(τ) dτ is the probability of dying by time s. Letting Q(s) = − log[1 −

P (s) + p(s)/v(0)] and q = Q̇ yields the time-varying felicity function q(s) + v(c). Thus

EU(C) = −[1 + p(0)/v(0)]

∫ ∞
0

exp
(
−
∫ t

0
v(c) + q(s) ds

)
dt.

If the probability of death is given by the Poisson density p(s) = λe−λs, q(s) = λ and
Rλ = −(λ+ v(c)). The Discounting Sensitivity Theorem then applies.
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6. The Duality Theory

When concavity of the value function is combined with interiority, more can be said. The
value function is differentiable, and its derivative is an absolutely continuous function that
obeys a type of multiplier equation.

6.1. Differentiability of the Value Function

As before, we consider a perturbation of the optimal path (Benveniste and Scheinkman,
1979). Given k(t) optimal from x0, define k(t|x) = k(t) + (1 − t/h)(x − x0) for 0 ≤ t ≤ h
and k(t|x) = k(t) otherwise. Note that k(0|x) = k(0) + (x− x0) = x.

Differentiability Theorem. Suppose the Technology, Felicity and Interiority Conditions
are satisfied for a concave economy with L and R continuously differentiable. Then the value
function is differentiable at x0 with J ′(x0) = L3(0, k(0), k̇(0)) − R3(0, k(0), k̇(0))J(k) where
k is the optimal path from x0.

Proof. The technology and felicity conditions insure k exists. Let h ≤ T with h ≤ 1. By
the interiority condition, k(t|x) is feasible when |x−x0| < εh ≤ ε. Consider Ih(x) = I(k(t|x)).
Clearly Ih(x0) = J(x0) and Ih(x) ≤ J(x). Since both J and Ih are concave, they have the
same derivative at x0.

dIh(x0)/dx = −
∫ h

0

[L2(1− t/h)− L3/h]D(t) dt

−
∫ ∞

0

L
[∫ m

0
[R2(1− t/h)−R3/h] ds

]
D(t) dt.

Where m = min(t, h) and all of the R and L terms are evaluated at k(t). All of the
action takes place on [0, h] since k(t) = k(t|x) for t > h. As R and L are C1, we obtain

J ′(x0) = L3(0, k(0), k̇(0))−R3(0, k(0), k̇(0))J(k) by letting h approach zero. �

When utility is additively separable with R = −ρ and L(t, k, k·) = −u(f(k) − βk − k̇),
this reduces to J ′(x0) = u′(c(0)) as found by Benveniste and Scheinkman (1979). Epstein

and Hynes (1983) investigate the case, L = 1 and R = −v(c) = −v(f(k)−βk− k̇) in detail.
Using the Volterra derivative at T = 0 (Volterra, 1959; Wan, 1970; Ryder and Heal, 1973),
they obtain J ′(x0) = −v′(c(0))J(k). Chang (1987) uses a simpler dynamic programming
argument to show J ′(k(t)) = u′(c(t)) − v′(c(t))J(k(t)) for the standard one-sector model
(f, 0, u, v, x).

Essentially, our method uses the Volterra derivative. The perturbation has only one sign,
magnitude less than ε and takes place over a time interval of length h. Thus, it is precisely
the type of perturbation used to obtain the Volterra derivative, and our limiting technique
yields the Volterra derivative along the optimal path.

Define present value prices by p(s) = D(s)[L3(s, k(s), k̇(s)) − R3(s, k(s), k̇(s))J(k(s), s)]

and current value prices q(s) = L3(s, k(s), k̇(s)) − R3(s, k(s), k̇(s))J(k(s), s). Note that
J(k(s), s) = −

∫∞
s
LD(t, s) dt with D and L evaluated along the optimal path from (s, k(s)).

Clearly k is optimal from (s, k(s)) by the Principle of Optimality. By the Differentiability
Theorem, p(s) = D(s)J1(k(s), s)
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Apart from the discount factor, two terms contribute to present value prices. The first
(L3) gives the marginal increase in current felicity. The second (R3J) gives the marginal
change in future utility, due to the effect of current consumption on future discounting.

6.2. The Price Equation

By examining another perturbation, we can derive expressions for ṗ and q̇. Consider the
path x(t) = k(t) + x− k(σ) for σ ≤ t ≤ τ and x(t) optimal from k(τ) + x− k(σ) thereafter.

Theorem (Multiplier Equation). Suppose the Technology, Felicity and Interiority Con-
ditions are satisfied for a concave economy with L and R continuously differentiable. Then
the associated prices p(t) and q(t) are absolutely continuous with ṗ(t) = D(t)[L2−R2J(k(t), t)].

Proof. Let g(x) = −
∫ t
σ
LD(s, σ) ds + D(t, σ)J(x(t), t). Note that g is concave, g(x) ≤

J(x, σ) and g(k(σ)) = J(k(σ), σ). Thus g′(k(σ)) = J1(k(σ), σ). We can rewrite this as

J1(k(σ), σ) = −
∫ t

σ

[
L2 + L

(∫ s
σ
R2 dτ

)]
D(s, σ) ds

+

(∫ t

σ

R2 dτ

)
D(t, σ)J(k(t), t) +D(t, σ)J1(k(t), t).

Multiplying by D(σ) and using D(t)J1(k(t), t) = p(t) gives

p(t) = p(k(σ)) +

∫ t

σ

[
L2 + L

(∫ s
σ
R2 dτ

)]
D(s) ds−

(∫ t

σ

R2 dτ

)
D(t)J(k(t), t).

It follows that p is absolutely continuous. Furthermore, since D(t)J(k(t), t) has derivative
LD, ṗ(t) = D(t)[L2 − R2J(k(t), t)]. Thus current value prices obey q̇(t) = −Rq(t) + L2 −
R2J(k(t), t). �

6.3. The Transversality Condition

The final result of this section examines when the existence of supporting prices obeying the
transversality condition (TVC) that limt→∞ p(t)k(t) = 0 is necessary and sufficient for an
optimum. As in Benveniste and Scheinkman (1982), this requires somewhat more stringent
conditions on felicity and technology.

Theorem 1. Suppose the Technology, Felicity and Interiority Conditions are satisfied for
a concave economy with L and R continuously differentiable. Further, suppose 0 = A(0),
I(0) is finite and D(t)J(0, t) → 0. If k is optimal, the supporting prices p(t) = D(t)[L3 −
R3J(k(t), t)] satisfy the multiplier equation and transversality condition.

Proof. By the Multiplier Theorem, we need only show that the transversality condition
is satisfied. Since J is concave,

q(t)(z − k(t)) ≥ J(z, t)− J(k(t), t). (1)

As 0 ∈ A(0), k/2 ∈ A(x/2) by concavity of the correspondence x → A(x). Further,
I(k/2) > −∞ by concavity of the objective. Let z = k(t)/2 and multiply equation (1) by
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D(t) to obtain

0 ≥ −p(t)k(t)/2 ≥ D(t)[J(k(t)/2, t)− J(k(t), t)]

≥ D(t)[J(0, t)− J(k(t)/2, t)] ≥ D(t)J(0, t)

where the last inequality follows since J ≤ 0. By assumption, D(t)J(0, t) converges to zero,
establishing the transversality condition. �

The requirement that D(t)J(0, t) → 0 is actually quite mild. For example, consider a
stationary problem with R ≤ ρ < 0. Then |D(t)J(0, t)| ≤ |J(0)|eρt which converges to zero
as ρ < 0.

Theorem 2. Suppose the Technology, Felicity and Interiority Conditions are satisfied for
a concave economy with L and R continuously differentiable. Suppose further that

lim
T→∞

J(k(t), t)D(t)

∫ T

0

[R2η +R3η̇] dt→ 0

for any η ∈ A(x)−k. If p(t) = [L3−R3J(k(t), t)]D(t) satisfies ṗ(t) = [L2−R2J(k(t), t)]D(t)
and the transversality condition p(t)k(t)→ 0 as t→∞, then k is optimal.

Proof. Suppose k is not optimal. Let I(k′) > I(k), δ = I(k′)−I(k) and η = k′−k. Let L′,
D′, Lε and Dε denote felicity and the discount factor evaluated along k′ and k+ εη. Choose

T0 so that −
∫ T

0
[L′D′ − LD] dt ≥ δ/2 for all T > T0. By concavity,

−
∫ T

0

[LεDε − LD]/ε dt = −
∫ T

0

[Lε − L]Dε/ε dt−
∫ T

0

L[Dε −D]/ε dt ≥ δ/2. (2)

Since LD = d(JD)/dt and d(Dε/D)/dt = (Rε − R)Dε/D, we can integrate the second

term by parts. Thus −
∫ T

0
L[Dε−D]/ε dt = −

∫ T
0
LD[Dε/D−1]/ε dt = −J(T )D(T )

∫ T
0

[Rε−
R]/ε dt+

∫ T
0
JDε[Rε −R]/ε dt. Substituting in (2) yields∫ T

0

Dε[JRε − JR− Lε + L]/ε dt− J(T )[Dε(T )−D(T )]/ε ≥ δ/2.

Since T <∞ and L and R are C1, we can let ε→ 0 to obtain∫ T

0

[(JR2 − L2)η + (JR3 − L3)η̇]Ddt− J(T )D(T )

∫ T

0

[R2η +R3η̇] dt ≥ δ/2.

By assumption, the second term converges to zero while the first term is just −
∫ T

0
(ṗη +

pη̇) dt > 0. As η(0) = 0, we have p(T )η(T ) = p(T )[k′(T )− k(T )] ≤ −δ/2. As p(T )k(T )→ 0
by the transversality condition, p(T )k′(T ) < 0 for T large. But p(T )k′(T ) ≥ 0. This
contradiction shows k is optimal. �



14 ROBERT A. BECKER AND JOHN H. BOYD III

The requirement that J(k(T ), T )D(T )
∫ T

0
[R2η + R3η̇] dt→ 0 as T →∞ may seem prob-

lematic, and can even be thought of as a type of transversality condition.6 However, in
many cases little or no information about the optimal path is required to insure it holds.
This condition is automatically satisfied in the additively separable case since R2 = R3 = 0.
Now consider a stationary non-additive problem, so J(k(t), t) = J(k(t)). If R2 and R3

are bounded on k with R bounded below zero, and if a maximum sustainable stock ex-
ists, this second transversality condition will always be satisfied. In other cases where
feasible paths are bounded, it is enough that the optimal path be bounded above zero.
For example, consider a one-sector model with discounting function v(c) = 3 − e−c, so

R(t, k, k̇) = −3 + exp(k̇ − f(k)), and a maximum sustainable stock. Then |R2| ≤ f ′ and
|R3| ≤ 1. The upper bound on k insures η and η̇ are bounded while the lower bound on
k bounds R2. The integral term grows at rate T while J(k(T ), T )D(T ) converges to zero
exponentially in T , so the product converges to zero.

Sorger (1990b) derives similar first order necessary conditions and a pair of transversality
conditions for a class of recursive problems based on the stochastic horizon model in Boukas,
Haurie and Michel (1990). His control problem requires that the technology be smooth. It
also allows for finite horizon problems with a scrap value. He transforms variables to reduce
the model to an additive infinite horizon model. Application of a refined version of Halkin’s
(1974) version of the Maximum Principle yields the result. For this class of problems,
Sorger’s Hamiltonian approach avoids our interiority assumption and convexity hypotheses.
However, even with smooth technology, the question of when his conditions are sufficient
for optimality remains open. In contrast, our approach to the multiplier and transversality
condition offers an essentially complete characterization of an optimum for many of the
concave models typically used in economic applications.

7. Conclusion

One possible extension of our results would be to demonstrate the necessity of the transver-
sality condition for models with I(0) = −∞; this has been attacked for additive models in
discrete time by Ekeland and Scheinkman (1986) and Shinotsuka (1990).

Another extension would be to study the existence of support prices from the view of
convex analysis by letting supergradients replace smoothness conditions (see Benveniste and
Scheinkman (1982) for the additive case). More generally, we would like to find the general
form of the dual for the concave recursive optimization problem; this would place the study
of shadow prices within the perturbation function approach associated with Ekeland and
Temem (1976); see Ponstein (1984) for some economic applications. One reason for seeking
the general form of the dual is to derive shadow prices when there are possible jumps in
the dual variables arising from the presence of binding state constraints (c.f. Araujo and
Scheinkman (1983)). This would be needed for fully characterizing optimal paths of agents
in order to discuss the properties for perfect foresight equilibria.

6Sorger (1990a) has shown by example that the conventional transversality condition involving prices is
not sufficient for optimality in the general non-additive case. Sorger (1990b) interprets J(k(T ), T )D(T )→ 0,
which amounts to convergence of utility along the optimal path, as a second transversality condition.
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Epstein (1987a) proposed a foundation for recursive utility functions based on the concept
of a generating function, which is the continuous-time analog of the discrete-time aggregator
function. Existence, sensitivity, and duality theory for the general case of utility functions
derived from Epstein’s generating functions are open questions. Our results provide a first
step in the study of sensitivity and duality for an important subclass of the functions included
in Epstein’s framework.

Department of Economics, Indiana University, Bloomington, IN 47405
Department of Economics, Florida International University, Miami, FL 33199
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