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I. Introduction

Most of the modern literature on capital theory and optimal growth has proceeded on the

assumption that preferences are represented by a functional which is additive over time and

discounts future rewards at a constant rate. Recent research in the study of preference

orders and utility functions has led to advances in intertemporal allocation theory on the

basis of weaker hypotheses. The class of recursive utility functions has been proposed as a

generalization of the additive utility family. The recursive utility functions share many of

the important characteristics of the additive class. Notably, recursive utility functions enjoy

a time consistency property that permits dynamic programming analysis of optimal growth

and competitive equilibrium models. The purpose of this paper is to survey the discrete

time theory of recursive utility functions and their applications in optimal growth theory.

Recursive utility involves flexible time preference. In contrast, the rigid time preference

of the common additively separable utility functions may yield results that seem strange

in ordinary circumstances. A consumer facing a fixed interest rate will try either to save

without limit, or to borrow without limit, except in the knife-edge case where the rate

of impatience equals the interest rate. This problem is especially severe when there are

heterogeneous households. Unless all of the households have the same discount factor, the

most patient household ends up with all the capital in the long-run, while all other households

consume nothing, using their labor income to service their debt.1 The constant discount

rate hypothesis also creates problems for the calculation of welfare losses arising from capital

income taxation. The after-tax return to capital is always the pure rate of time preference.

The capital tax is therefore completely shifted to labor in the long-run. As a result, the

welfare cost of the tax is higher than it would be if some adjustment of the after-tax rate of

return could occur.

Recursive utility escapes these dilemmas by allowing impatience to depend on the path of

consumption. The assumptions made on utility allowing for variable time preference imply

a weak separability between present and future consumption. This leads to a representation

of the utility function in terms of an aggregator function expressing current utility of a

consumption path as a function of current consumption and the future utility derived from

1 Becker (1980) demonstrated a variant of this result for the case of a borrowing constraint. The relatively
impatient households consume their wage income. This result was verification of a conjecture of Ramsey
(1928).
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the remaining periods consumption. In this way, recursive utility recalls the two-period

model of Fisher (1930).

Time additive separable utility has dominated research in economic dynamics owing to the

mathematical simplification derived from that functional form. The economic plausibility

of additive utility was pushed aside in the interest of obtaining insights and directions for

further research. The body of work surveyed in this paper represents the latest efforts

at studying dynamic optimization models with intertemporally dependent preferences as

embodied in the recursive utility hypothesis. The foundations of recursive utility theory were

set by Koopmans and his collaborators during the 1960’s and early 1970’s. We reexamine

this work in light of new developments in general equilibrium theory with infinite dimensional

commodity spaces. We focus on the optimal growth model as the paradigm for dynamic

models with brief mention of general competitive analysis for exchange economies as another

illustration of the methods used to analyze the implications of a recursive utility specification

of preferences. Part II of the paper examines the structure of commodity spaces with a

countable infinity of goods and reviews the properties of recursive utility functions. Part III

explores the variety of notions of impatience and myopia. The aggregator as the primitive

expression of the preference order is taken up in Part IV. The dynamic properties exhibited

by optimal growth paths with recursive utility objectives is presented in Part V. Concluding

comments are found in Part VI and an appendix devoted to mathematical properties of

weighted contraction mappings completes the paper.

II. Recursive Utility and Intertemporal Preferences

1. Introduction

The development of the recursive utility representation of an intertemporal preference order

is most easily cast in a world with a countable infinity of time periods, t = 1, 2, . . . , T, . . .

where there is one all-purpose good which may be either consumed or accumulated. The

description of preference orderings exhibiting recursive separability as well various other fea-

tures, e.g. myopia or impatience, is presented as a refinement of standard axioms governing

preference relations in an infinite dimensional commodity space setup.

Let ct denote consumption in period t and let kt denote the capital stock accumulated

during period t, to be used in production for period t + 1. The initial capital stock is k0.
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The sequences of consumption levels C = {ct}∞t=1, and of capital stocks K = {kt}∞t=1, are

elements of R∞, the space of all real-valued sequences. For the remainder of this part as well

as Part III, the focus will be on the possible consumption sequences; capital will reappear

in Part IV.

This section focuses on recursive utility as an abstract preference order. Accordingly, we

examine the properties of commodity and price spaces in Section Two, with examples in

Section Three. Section Four sets forth the relevant facts about representation of preferences.

Finally, Section Five introduces the Koopmans’ Axioms, which imply that recursive utility

takes a special form.

2. The Commodity-Price Duality

The commodity space, E , is a subspace of R∞. Elements of E are denoted by C,X, and

Y . The space E may be chosen as a proper subspace of R∞. The case E = `∞, the space

of all bounded real-valued sequences, is a popular example. The space R∞ has a natural

order property: For elements X and Y of R∞, define ≥by X ≥ Y if and only if xt ≥ yt for

all t. The partial order relation ≥ may be used to define the set R∞+ , the positive cone of

R∞, by the relation R∞+ = {X ∈ R∞ : X ≥ 0}, where 0 is the zero vector. The space E
inherits the order structure determined by the partial order ≥; E+ denotes the positive cone

of E . For X ∈ R∞, let |X| = {|xt|}∞t=1 denote the absolute value of X. Define the projection

operator π and shift operator by πC = c1 and SC = (c2, c3, . . . ) for C ∈ R∞. The operator

πNC = (c1, c2, . . . , cN) denotes the projection of C onto the first N coordinate factor spaces.

The N th iterate of the shift operator, SN , is defined by SNC = (cN+1, cN+2, . . . ).

The space R∞ is an example of a Riesz space (or vector lattice). That is, for every pair of

vectors X and Y , the supremum (least upper bound) and infimum (greatest lower bound)

of the set {X, Y } exist in R∞. In standard lattice theory notation, X ∨Y = sup{X, Y } and

X ∧ Y = inf{X, Y }.2 We will require E to be a Riesz subspace of R∞, that is, whenever X

and Y ∈ E , the elements X ∨ Y and X ∧ Y both belong to E .

An important class of commodity spaces may be defined given a vector ω = (ω1, ω2, . . . ) ∈
R∞ as follows: let

Aω = {X ∈ R∞ : |X| ≤ λ|ω| for some λ ≥ 0},

2 For a general discussion of Riesz spaces with economic applications, see Aliprantis, Brown and Burkinshaw
(1989).
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where λ is a scaler and the notation |X| ≤ |Y | means |xt| ≤ |yt| for all t . The set Aω is the

principal ideal generated by ω. Aω is a Riesz subspace of R∞. Notice that for ω = (1, 1, . . . )

that Aω = `∞. In applications of recursive utility models, the natural commodity space will

typically be a principal ideal. The particular application will determine the choice of ω. For

instance, in an exchange economy, ω would be the aggregate or social endowment vector. In

the Ramsey optimal growth setting, ω would be the path of pure accumulation generated

by iteration of the production function with seed k0.

The open-ended horizon characteristic of dynamic economic models means that there are

several Hausdorff linear topologies available for E in contrast to the finite horizon case. Thus

several dual spaces are also available in the infinite dimensional framework. The choice of a

topology for E as well as a selection of the dual space has important economic consequences.

Koopmans (1960) first observed that the continuity hypothesis maintained on an agent’s

preference order contained an implicit behavioral assumption about myopia. The properties

of the dual space show up in the representation of prices realized in a perfect foresight

equilibrium or in support of an optimum allocation.3 The representation of the price system

links to questions about the possibility of bubbles in an equilibrium configuration.4

We will equip E with a linear topology τ compatible with the algebraic and lattice structure

of the space. A subset A of a Riesz space E is said to be a solid set whenever |Y | ≤ |X| and

X ∈ A imply Y ∈ A. In this paper, the toplogies will always be locally convex-solid: the

topology is locally convex and has a base at zero consisting of solid sets.

Riesz dual system. A Riesz dual system 〈E , E ′〉 is a dual pair of linear spaces such that

(1) E is a Riesz space;

(2) E ′ is an ideal of the order dual E∼ separating the points of E ;

(3) the duality function 〈·, ·〉 is the natural one given by the evaluation 〈X,P 〉 = P (X) ≡
PX for all X ∈ E and all P ∈ E ′.

In the economic framework, E is the commodity space and E ′ is the price space. The eval-

uation 〈·, P 〉 defines a linear functional on E interpreted as a price system. The assumption

that (E , τ) is a locally convex-solid topology implies the dual system 〈E , E ′〉 is a Riesz dual

system where E ′ is the τ -dual of E .5 Given 〈E , E ′〉, denote by σ(E , E ′) the weak topology and

τ(E , E ′) the Mackey topology of the dual pair 〈E , E ′〉.

3 Debreu (1954) first cast equilibrium models in terms of a commodity-price dual pair of linear spaces.
4 See Gilles (1989) and Gilles and LeRoy (1989).
5 See Aliprantis, Brown and Burkinshaw (1989, pp. 99, 101).
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For the Riesz space E , any set of the form

[X, Y ] = {Z ∈ E : X ≤ Z ≤ Y }

is called an order interval of E . The Riesz dual system 〈E , E ′〉 is symmetric whenever every

order interval of E is σ(E , E ′)-compact.6

3. Examples of Commodity Spaces

The Riesz dual system 〈R∞, c00〉, where c00 is the Riesz space of all eventually zero sequences,

is a symmetric Riesz dual system. The evaluation is defined by the formula

〈X,P 〉 =
T∑
t=1

ptxt

where P = {pt} and pt = 0 for t > T . The space R∞ is a Fréchet space, i.e, it is a complete

metrisable locally convex linear topological space. The Fréchet metric dF is defined by

dF (X, Y ) =
∞∑
t=1

1

2t
|xt − yt|

1 + |xt − yt|
.

The space (R∞, dF ) is also a separable metric space. Moreover, the Fréchet topology is

equivalent to the σ(R∞, c00)-topology, the τ(R∞, c00)-topology, as well as the product topol-

ogy on R∞ viewed as the product of countably many copies of R. Convergence of sequences

in (R∞, dF ) is coordinatewise.7

The Riesz space E = `∞ underlies two interesting commodity-price dual pairs. First,

consider the dual pair 〈`∞, ba〉, where ba is the space of bounded additive set functions (or

charges) on the positive integers. If `∞ is endowed with the supremum norm topology, then

ba is the norm dual of `∞. The ‖ · ‖∞ norm of X is defined by the formula

‖X‖∞ = sup
t
|xt|,

6 There are several equivalent properties for symmetric Riesz dual systems. See Aliprantis, Brown and
Burkinshaw (1989, p. 102).
7 These facts about R∞ may be found in Liusternik and Sobolev (1961). General properties of Fréchet
spaces may be found in Robertson and Robertson (1973).



6 ROBERT A. BECKER AND JOHN H. BOYD III

and the space (`∞, ‖ · ‖∞) is a Banach space, i.e., it is a complete normed linear space. The

spaces `∞ and ba are paired by means of the bilinear form 〈X,Π〉 defined by

〈X,Π〉 =

∫
X(t) dΠ.

If Π ∈ ba is a countably additive charge, then the Radon-Nikodym Theorem (Dunford and

Schwartz (1957, p. 181) implies there exists a unique P ∈ `1, such that

〈X,Π〉 =
∞∑
t=1

ptxt

for each X ∈ `∞. The countably additive elements of ba have natural price interpretations.

However, there are continuous linear functionals on (`∞, ‖ · ‖∞) which are not identifiable

with price systems in this fashion.8 A charge failing to have a countably additive part

is known as a pure charge (purely finitely additive measure).9 In general, a charge may be

uniquely decomposed into a maximally countably additive measure and a pure charge; this is

the Yosida-Hewitt Decomposition Theorem (Bhaskara Rao and Bhaskara Rao, 1983, p. 241).

Put differently, ba is the direct sum of ca, the space of countably additive measures, and

pch, the space of pure charges. The space (`∞, ‖ · ‖∞) is also a Banach lattice or complete

normed Riesz space. As such, the ‖ · ‖∞-topology is locally convex-solid and 〈`∞, ba〉 is a

Riesz dual system.

The second interesting pairing of `∞ with a dual space is the 〈`∞, `1〉 specification, where

`1 is the space of all sequences X for which the norm

‖X‖1 =
∞∑
t=1

|xt|

is finite. The evaluation 〈X,P 〉 is the natural one defined by

〈X,P 〉 =
∞∑
t=1

ptxt.

This pair constitutes a symmetric Riesz dual system.

8 Banach limits are an example.
9 See Bhaskara Rao and Bhaskara Rao (1983) for details on the properties of ba.
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The pair 〈`∞, `1〉 has several interesting topologies. For example, the τ(`∞, `1)-topology

and the weak∗-topology, σ∗(`∞, `1), have been used in economic applications.10 Another

important topology is the strict topology defined by seminorms of the form

‖X‖γ = sup
t
|xtγt|,

where limt γt = 0. Conway (1967) proved that `∞ endowed with the strict toplogy is a strong

Mackey space.11 Consequently, the strict toplogy is the finest locally convex Hausdorff

topology for the dual pair 〈`∞, `1〉.
A third class of examples is based on consideration of the principal ideal Aω defined for

ω = (α, α2, . . . ) when α ≥ 1. The case α = 1 corresponds to the situation where Aω = `∞.

Let β ≥ α and define the β-weighted `∞ norm (or β-norm), ‖ · ‖β, by

‖X‖β = sup
t
|xt/βt|.

The β-topology on Aω is the norm topology induced by the β-norm. If α = β, then ‖ · ‖α is

called the α-norm and the corresponding topology is the α-topology . The space Aω endowed

with the α-norm is an AM-space with unit .12 The α-normed space Aω is lattice isometric to

`∞: the mapping ξ : Aω → `∞, defined by

ξ(x1, x2, . . . , xt, . . . ) = (
x1

α
,
x2

α2
, . . . ,

xt
αt
, . . . )

is a linear isometry. The α-norm dual of Aω is denoted by A′ω; clearly A′ω is isometric to

ba (written A′ω
∼= ba). For β > α, the β-norm is a lattice norm and the β-topology is a

locally convex-solid topology on Aω.13 The normed Riesz space (Aω, ‖ · ‖β), β > α, may

be embedded lattice isometrically in c0 (endowed with the supremum norm). Here c0 is the

space of real-valued sequences convergent to 0. Indeed the mapping ψ : Aω → c0, defined by

ψ(x1, x2, . . . , xt, . . . ) = (
x1

β
,
x2

β2
, . . . ,

xt
βt
, . . . )

10 Alaoglu’s Theorem implies that the order intervals of `∞ are weak∗-compact.
11 The Mackey topology is the topology of uniform convergence on the weak∗-compact, convex, circled
(balanced) subsets of `1. The strong Mackey topology is the topology of uniform convergence on the weak∗-
compact subsets of `1.

12 The lattice norm ‖X‖∞ = inf{λ > 0 : |X| ≤ λω} coincides with the α-norm.
13 Recall that all the lattice norms turning Aω into a Banach lattice are equivalent (see Aliprantis and
Burkinshaw, 1985, p. 170). The space (Aω, ‖ · ‖β) is a normed Riesz space but not a Banach lattice when
β > α.
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is a lattice isometry. Moreover, ψ(Aω) is dense in c0.14 It follows that the norm completion

of ψ(Aω) is c0 and the norm completion of (Aω, ‖ · ‖β) is lattice isometric to c0. Let A∗ω

denote the β-norm dual of Aω. Since A∗ω and the dual of the norm completion of (Aω, ‖ · ‖β)

coincide, A∗ω is lattice isometric to `1 ∼= c∗0. Finally, note that the β-norm dual (β > α) is one

of the seminorms used to define the strict and Mackey topologies on `∞, so the β-topology

is weaker than the strict (or Mackey) topology on `∞.

We will frequently use a family of weighted norms and weighted `∞ spaces. Let Θ = {θt}
be a sequence of strictly positive numbers. Define the (`∞) Θ-norm by |X|Θ = supt |Xt|/θt.
The associated weighted `∞ space is `∞(Θ) = {X : |X|Θ is finite}.15 Consider the mapping

V defined by (V X)t = xt/θt. Clearly V is an isometry of `∞(Θ) onto `∞. Since `∞ is a

Banach space, so is `∞(Θ).

We will mainly focus on the case θt = βt−1 for some β ≥ 1. These norms can be thought

of as having the discount factor 1/β built in.16 In this case, the positive orthant of `∞(Θ)

will be denoted by by `∞+ (β) and the Θ-norm by |X|β. The sets `∞+ (β) play an important

role throughout this paper.

4. Preference Orders

A dual pair 〈E , E ′〉 is chosen for the commodity-price duality. We require 〈E , E ′〉 to be a

Riesz dual system with E a Riesz subspace of R∞. The preference relation of the planning

agent is denoted by %. The planning agent might be a central planner as in optimal growth

theory or an infinitely lived household in an intertemporal market setup. It is assumed

Preference relation.

(U1) % is a reflexive, complete, and transitive binary relation;

(U2) % is a monotone relation, i.e. X ≥ Y in E+ implies X % Y ;

(U3) % is a convex relation, i.e. the set {Y ∈ E+ : Y % X} is convex for each X ∈ E+.

Properties (U1)-(U3) of the preference relation are based on the algebraic structure of E .

Topological considerations will be introduced shortly in the form of continuity hypotheses.

The derived strict preference relation � is defined by X � Y if X % Y and not Y % X.

The indifference relation ∼ is defined by X ∼ Y if X % Y and Y % X hold.

14 c0 ⊇ ψ(Aω) ⊇ c00 and c00 is a supremum norm dense Riesz subspace of c0.
15 This is the Riesz ideal of R∞ generated by Θ, and |X|Θ is the associated lattice norm.
16 Topologies of this type have been used by Chichilnisky and Kalman (1980) and Dechert and Nishimura
(1980) to study optimal paths.
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Endow E with a linear topology τ . Continuity of the preference relation says roughly that

programs that are close to one another are ranked similarly with respect to other profiles.

More formally:

(U4) % is a continuous relation, i.e. the sets {Y ∈ E+ : X % Y } and {Y ∈ E+ : X - Y }
are τ -closed.

The continuity hypothesis is fundamental. The variety of alternative topologies for E
raises the question of whether or not there are behavioral implications implicit in the choice

of a particular topology for E . We will take up many of these issues in Part III.

It is worth noting that there are examples of preference orders which fail the continuity

test on all of R∞. Consider the dual pairing 〈R∞, c00〉 where R∞ has the Fréchet metric

topology. The preference order

X % Y if and only if inf
t
xt ≥ inf

t
yt

is known as the maximin order .17 It is not continuous in the Fréchet distance, although

{Y ∈ E+ : Y % X} is dF -closed. The problem is that {Y ∈ E+ : X % Y } need not be a

dF -closed set.

Consider the following relation on R∞+ :

X % Y if and only if
∞∑
t=1

δt−1xηt ≥
∞∑
t=1

δt−1yηt

where δ, η ∈ (0, 1) and δαη < 1. In this example, α is a parameter representing the growth

rate of capital in the optimal accumulation model or the growth rate of the endowment in

an exchange economy. Beals and Koopmans (1969) showed this preference relation is not

continuous at the origin of R∞+ in the dF metric. However, it will turn out that this relation

is continuous on a subset of the commodity space consistent with the feasible allocations.

This fact is, in part, the source of our interest in the principal ideal Aω.

Continuity of the preference relation is important for establishing the existence of optimal

allocations.18 Continuity of % also is critical in demonstrating the existence of a utility func-

tion which carries the properties of the preference relation in a conveniant analytical format.

17 This preference relation was introduced by Rawls (1971) and is also known as the Rawlsian criterion.
18 Clearly, only the set {Y ∈ E+ : Y % X} need be τ -closed for the existence of optimal allocations in the
presence of a τ -compact constraint set.
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Since most of optimal growth theory is cast in the framework of a utility representation of

the planner’s preference order, it is natural to present conditions sufficient for the existence

of a continuous representation of %.

A function U : X → R is a utility function representing % on a set X ⊆ E+ provided

X % Y if and only if U(X) ≥ U(Y ).

The following theorem of Debreu (1954, 1959) gives one answer to the representation prob-

lem.

Separable Representation Theorem. Suppose a preference relation % satisfies (U1)

and (U4) on a separable connected set X . Then % is represented by a continuous utility

function U .

The Separable Representation Theorem applies to preference orders on X = R∞+ where

X is given the relative product topology inherited from R∞. As R∞ is a separable space, a

continuous utility function exists given (U1) and (U4). Another application occurs in the

case E = Aω equipped with the β-topology (β > α): c0 is a separable Banach space. Set

A(ω) = {X ∈ R∞ : |X| ≤ ω} and note Aω = ∪λ>0λA(ω).

Lemma 1. Let α < β and ωt = αt. The β-topology and the relative product topology

coincide on λA(ω) for each λ > 0.

Proof. Clearly the β-topology is stronger than the product topology on Aω. Suppose

Cn → C in the product topology. Given ε > 0, choose M such that λ(α/β)M < ε. Since

Cn → C, there is an N with sup{|cnt − ct|/βt : t ≤ M} < ε for n > N , and Cn → C in the

β-topology. But then ‖Cn − C‖β < 2ε for n > N , and Cn → C in the β-topology. The two

topologies are identical. �

It is crucial that β > α. Majumdar (1975) gives an example illustrating why norm-

bounded feasible sets are not compact in the norm topology. The same sort of problem

would occur here if β = α. In fact, β = α = 1 is precisely Majumdar’s case.

The coincidence of the relative product and β-topologies for β > α on the set X = A+
ω

implies X is a separable and pathwise-connected subset of a normed linear space. Therefore,

the Separable Representation Theorem yields a β-continuous utility function for each β-

continuous preference relation.

As a topological space, (`∞, ‖ · ‖∞) is not separable. Thus, even if % is ‖ · ‖∞-continuous

on `∞, we cannot apply the Separable Representation Theorem in order to represent % by
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a continuous utility function. However, Mas-Colell (1986) exploited the order structure of E
and the monotonicity axiom (U2) in the manner of Kannai (1970) to deduce the existence

of a continuous utility representation of % on a portion of the program space.

Monotone Representation Theorem. Suppose a preference relation % satisfies (U1),

(U2), and (U4) on a non-empty order interval X ⊆ E+. Then there is a continuous utility

function U : X → [0, 1] representing the preference relation %.19

Proof. Let X = [A,B] where A, B ∈ E+. Since B ≥ A, (U2) implies B % A. If A % B,

there is nothing to prove. So, let B � A. Consider the set

J = {θA+ (1− θ)B : 0 ≤ θ ≤ 1}.

Since θ 7→ θA+ (1− θ)B is a homeomorphism from [0, 1] to J , the separable representation

theorem yields a continuous f : J → [0, 1] such that f(A) = 0, f(B) = 1, and f(X) ≥ f(Y )

whenever X, Y ∈ J and X % Y . For any X ∈ X let v(X) be such that v(X) ∈ J and

v(X) ∼ X. Because J is connected and a subset of the union of the closed sets {Y : Y % X

} and {Y : X % Y }, such a v(X) must exist. Now set U(X) = f(v(X)). Obviously, U is a

utility function. Since U is onto [0, 1], given any t ∈ [0, 1], there exists an X ∈ X such that

U(X) = t. The sets

U−1[t,∞) = {Y : Y % X}

U−1(−∞, t] = {Y : X % Y }

are closed by (U4). Therefore U is continuous. �

The Monotone Representation Theorem handles many of the examples we shall discuss.

For ω = (1, 1, . . . ), the Monotone Representation Theorem applies to the Beals-Koopmans

example when X = [0, ω] and Aω has the α-topology. In the optimal growth model, the order

interval is defined by taking ω to be the path of pure accumulation with seed k0. If there is a

maximum sustainable stock b > 0 and the production function is stationary, then the order

interval [0, ω] with ωt = b works. The Monotone Representation Theorem implies that a

preference order defined over E+ may only admit a continuous utility function on [0, ω]. This

order interval is sufficiently “large” enough to contain all economically relevant consumption

programs. Paths offering consumption C /∈ [0, ω] cannot be realized by any feasible plan of

19 The proof is a slight repackaging of Mas-Colell (1986, p. 1044).
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accumulation given the initial stocks. As such, those programs may be ignored for the theory

developed to analyze the existence and characterization of optimal allocations. Finally, we

remark that the order property of E was the critical structural feature of the choice space

used to obtain the representation of the preference relation.

The existence of support prices or a competitive equilibrium price system in infinite di-

mensional commodity spaces is another point where finite horizon results do not readily

carry over to the infinite horizon models. The familiar separation theorem argument prov-

ing the Second Fundamental Welfare Theorem for a discrete time finite horizon model relies

on the fact that the positive cone of a finite dimensional Euclidean space has a non-empty

norm interior. Debreu (1954) showed the Second Fundamental Welfare Theorem could be

demonstrated for economies modeled on infinite dimensional spaces with this property. The

positive cones of the spaces (`∞, ‖ · ‖∞) and (Aω, ‖ · ‖α) have non-empty interiors; Debreu’s

theorem applies to these cases.20 Unfortunately, the positive cones of the spaces (R∞, dF )

and (Aω, ‖ · ‖β), β > α, have empty interiors. The interior of `∞+ is also empty in the

τ(`∞, `1)-topology. Nearly thirty years after the publication of Debreu’s paper, Mas-Colell

(1986) gave a demonstration of the Second Fundamental Welfare Theorem for spaces whose

positive cone, E+, has an empty interior. He required E to be a topological Riesz space.

He introduced a new restriction on preference orders, called properness, which restricted

marginal rates of substitution in a manner allowing use of the separation theorem from con-

vex analysis to deduce the welfare theorem. A detailed survey of the welfare theorems for

infinite dimensional commodity space models may be found in Becker (1991a). We briefly

review the notion of proper preferences in order to discuss an application of myopic utility

functions in an exchange economy setting and to contrast properness to other restrictions

on the marginal rates of substitution in Part III on impatience and discounting.

Let E be a Riesz space equipped with a locally convex linear topology τ and % a preference

relation on E+.21

Uniform Properness. We say that % is a uniformly τ -proper preference relation on E+

if there exists a non-empty τ -open convex cone Γ such that

a) Γ ∩ (−E+) 6= ∅; and

20 Majumdar (1975) derives support prices for the one sector optimal growth model in discrete time using a
separation argument in the spirit of Debreu’s paper for the commodity space (`∞, ‖ · ‖∞).

21 To simplify our exposition, we take the Properness Characterization Theorem due orginally to Mas-Colell
(1986) and presented in Aliprantis, Brown and Burkinshaw (1989, p. 117) as the basis for our definition of
properness.
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b) (X + Γ) ∩ {Y : Y � X} = ∅ for all X ∈ E+.

A uniformly proper preference relation bounds marginal rates of substitution and is inti-

mately linked to the possibility of supporting a weakly preferred set by a continuous linear

functional. Formally:

Remark. If % is a convex τ -proper preference relation on E+, then there exists a P ∈ E ′,
P 6= 0, such that 〈X,P 〉 ≤ 〈Z, P 〉 for all Z ∈ {Y : Y % X}.

For preference relations defined on either a space E+ with non-empty τ -interior or E is

an AM -space with unit, then uniform properness is a strengthening of the monotonicity

axiom.22.

Preferences on (Aω, ‖ · ‖α) and (`∞, ‖ · ‖∞) are uniformly norm-proper if % is strictly

monotone as in axiom (U2′) below.23

Monotonicity.

(U2′) % is a strictly monotone relation, i.e X ≥ Y , X 6= Y , in E+ implies X � Y .

Preference relations defined on R∞+ are not, in general, uniformly proper. In fact, there

are no utility functions on R∞+ which are strictly monotone, quasi-concave, dF -continuous,

and uniformly dF -proper.24 This means that the preference relation defined by the utility

function

U(C) =
∞∑
t=1

δt−1u(ct), (1)

is not uniformly dF -proper on R∞+ for 0 < δ < 1 and u bounded, strictly increasing, and

strictly concave on [0,∞). The parameter δ is called the discount factor and δ−1 − 1 = ρ is

called the pure rate of time preference. The function u is known as the one-period reward

or felicity function.25 In order to guarentee convergence in the series (1), we temporarily

assume u is bounded. Since this U is an important member of the recursive utility class, the

properness condition would seem to have limited applicability in the intertemporal frame-

work. However, the following result from Becker (1991b) illustrates the potential for the

β-topology to yield a positive result.

Proposition 1. If U is a strictly monotone, β-norm continuous utility function on A+
ω for

22 See Aliprantis, Brown and Burkinshaw (1989, p. 118) and Mas-Colell (1986, p. 1043)
23 The maximin order is a monotone, but not strictly monotone preference relation.
24 See Aliprantis, Brown and Burkinshaw (1989, p. 174).
25 u is usually assumed to be twice continuously differentiable on (0,∞).
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ωt = αt, then the underlying preference order % is a uniformly α-norm proper preference

relation.

Proof. Since the β-norm is a lattice norm on Aω, the β-topology is coarser than the α-

topology; it follows that the preference is α-norm continuous. Hence a β-norm continuous

utility function is continuous in the α-topology. Let V be the open unit ball in Aω, i.e.

V = {X ∈ Aω : ‖X‖α < 1}. Let Γ be the cone generated by the set (−ω + V). Clearly,

Γ− ⊆ Aω, the negative cone of Aω. Notice that Y ∈ Γ implies Y < 0 and U(X+Y ) < U(X).

Hence (X + Γ) ∩ {Z ∈ Aω : U(Z) ≥ U(X)} = ∅. �

It is useful to record the fact that % is uniformly proper in the α-topology in the case

where u obeys a classical Inada condition at zero in (1). For example, set u(c) = arctan(
√
c).

A result due to Back (1988) shows examples of utility functions of the form (1) obeying the

Inada condition at zero would fail to be uniformly proper in the τ(`∞, `1)-topology.

5. Recursive Utility: The Koopmans Axioms

Theories of intertemporal decision making further specialize the axiom system (U1)-(U4) to

capture the essential role of time in the preference order. The purpose of this section is to

present an axiomatic basis for a recursive utility representation of % to exist. Before devel-

oping this axiomatic structure, it is worthwhile to introduce the recursive utility construct

through three examples.

A familiar objective in optimal growth theory is the time-additive separable (TAS) utility

function (1). The TAS form has two interesting properties. First, the marginal rate of

substitution between any pair of adjacent dates depends only on consumption at those

dates. Formally,

MRSt,t+1(C) =
u′(ct)

δu′(ct+1)
.

In particular, for constant consumption profiles denoted by C = Ccon (ct = c for all t),

MRSt,t+1(Ccon) = δ−1, (2)

which is independent of Ccon.

The second property is that U is recursive. The behavior embodied in the TAS speci-

fication of U has a self-referential property: namely, the behavior of the planner over the

infinite time horizon t = 1, 2, . . . is guided by the behavior of that agent over the tail horizon
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t = T+1, T+2, . . . (for each T ) hidden inside the original horizon.26 For the TAS functional,

recursivity means the objective from time T + 1 to +∞ has the same form as the objective

starting at T = 0 (except for some time shifts in consumption dates). Formally, (1) may be

rewritten as
∞∑
t=1

δt−1u(ct) =
T∑
t=1

δt−1u(ct) + δT
∞∑
t=1

δt−1u(ct+T ). (3)

For T = 0, (3) coincides with (1).

An important implication of the recursive structure found in the TAS utility specification

is that intertemporal planning in a stationary environment is time consistent in the sense

first used by Strotz (1955). If the planner is free to revise his decisions at some time T > 0,

then his decisions at T will depend on the past only through accumulated assets defining

the current magnitute of the state variable. Decisions at T will not depend directly on

past consumption patterns. Indeed, recursive utility is the intertemporal analog of weak

separability of future consumption from present consumption as formulated in standard

finite horizon demand theory.27

The TAS objective functional has been criticized by various authors, dating back to Fisher

(1930), on grounds that the pure rate of time preference should not be independent of the

size and shape of the consumption profile. When preferences are time-additive, this inde-

pendence is a direct consequence of the strong separability property embodied in (2). Hicks

(1965, p. 261) argued against the TAS formulation on grounds that successive consumption

units should exhibit a strong complementarity between them. The force of the Hicksian

critique is that the amount of consumption in period 1 the planner would be willing to give

up to increase consumption in period T should also depend in some way on the planned con-

sumption in adjacent periods (e.g. periods T−1 and T+1). The additivity hypothesis denies

this connection. In essence, Hicks argued that the potential for smoothing consumption in

the presence of complementarity between periods is lost in the acceptance that felicities are

independent as found in the TAS specification of utility. Lucas and Stokey (1984) argued

that the only basis for studying the TAS case is its analytic tractability.

Koopmans (1960) laid the foundation for eliminating both deficiencies of the TAS func-

tional by introducing recursive preferences. The recursive utility class is designed to intro-

duce a degree of generality that is consistent with Fisher’s time preference views, offers time

consistent optimal planning, and preserves much of the analytical convenience of the TAS

26 We are transposing Gleick’s (1987, p. 179) characterization of recursive structure into an economic context.
27 Consult Blackorby, Primont, and Russell (1978) for details on finite horizon discrete time demand theory.
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case.

The second example of a recursive utility functional is based on an uncertain lifetime

model. Let pt denote the probability that the agent dies at time t and let qt = 1− pt denote

the survival probability at t. Let U0 = U(0con) be the utility of the agent if dead. Epstein

(1983) showed that

U(C) = −
∞∑
t=1

exp[−
∑t

τ=1 u(cτ )] (4)

is a von-Neumann-Morgenstern index.28 We may use (4) to calculate the expected utility of

a consumption stream C, EU(C). Assuming the probability of death is independent of t, a

routine calculation yields the expression

EU(C) = pU0 − (1− pU0)
∞∑
t=1

exp
[
−
∑t

τ=1[u(cτ )− log(1− p)]
]
. (5)

Equation (5) may be further transformed into the equivalent representation

EU∗(C) = −
∞∑
t=1

exp
[
−
∑t

τ=1[u(cτ )− log(1− p)]
]
. (6)

The expected utility function EU∗ converts the preferences of the agent in the stochastic

lifetime problem into the equivalent deterministic payoff functional (6). The utility func-

tional embodied in (6) is a member of the recursive class. Indeed, following the derivation

of (3) in the case (6) leads to29

−
∞∑
t=1

exp
[
−
∑t

τ=1 u(cτ )
]

= −
T∑
t=1

exp
[
−
∑t

τ=1 u(cτ )
]

−
T∑
t=1

exp
[
−
∑t

τ=1 u(cτ )
] ∞∑
t=T+1

exp
[
−
∑t

τ=T+1 u(cτ )
]
,

which is a time-shifted version of (4). We call this the (EH) utility function after the

continuous time form introduced by Epstein and Hynes (1983).30

The third example is based on the maximin functional defined by

U(C) = inf
t
ct. (7)

28 See Epstein and Hynes (1983) for a deterministic account of this functional in continuous time.
29 We assume p = 0 for simplicity.
30 The EH utility function is closely related to the continuous time Uzawa (1968) functional.



RECURSIVE UTILITY: DISCRETE TIME THEORY 17

Clearly,

U(C) = inf
t
ct = inf{c1, inf

t≥2
ct} = inf{c1, c2, . . . , cT , inf

t≥T+1
ct}. (8)

This computation shows the maximin functional also enjoys a recursive structure in common

with the TAS and EH cases.

Given a preference order % on X , a utility representation, U , of % is a recursive utility

function if there is a real-valued function u defined on R+ and a real-valued function W

defined on u(R+)× U(X ) such that

U(C) = W (u(c1), U(SC)). (9)

The function W is called the aggregator and equation (10) is called Koopman’s equation. We

refer to u as the felicity function. A recursive utility function expresses the weak separability

of the future from the present.31 Fisher’s two-period conception of an agent contemplating

current consumption and future utility may be modeled by recursive utility functions.

The three examples introduced above fall under the recursive utility definition. For the

TAS case, the aggregator is W (C, y) = u(c) + δy. The EH functional has W (c, y) = −(1 +

y) exp(−u(c)) as an aggregator. The maximin aggregator is W (c, y) = min{c, y}.
We turn to describing sufficient conditions for % to exhibit a recursive utility representa-

tion. The axiom system employed differs slightly from those in Koopmans (1960). Let X be

a path connected subspace of E+. The notation (z,X) denotes the sequence (z, x1, x2, . . . ).

We assume the shift operator S defined on E is continuous as is the embedding z 7→ (z,X)

of X into E for each X. The projection of E+ onto the first coordinate subspace is denoted

πE+. The Koopmans axioms are:

Koopmans Axioms.

(K1) % is a stationary relation, i.e. (z,X) % (z,X ′) if and only if X % X ′ for all z ∈ πE+;

(K2) % exhibits limited independence, i.e. for all z, z′, X, and X ′, (z,X) % (z′, X) if and

only if (z,X ′) % (z′, X ′);

(K3) % is a sensitive relation, i.e. there is an X ∈ E+ and a z, z′ ∈ πE+ with (z′, X) �
(z,X).

Axiom (K1) states the preference order is independent of calendar time. Axiom (K2) says

that preferences between present consumption alternatives are independent of future con-

sumption and that preferences over future consumption streams are independent of the level

31 We use standard terminology from demand theory, c.f. Blackorby, Primont, and Russell (1978).



18 ROBERT A. BECKER AND JOHN H. BOYD III

of consumption. The combination of axioms (K1) and (K2) implies that merely postpon-

ing a decision between two programs will not alter the rank order. The time inconsistency

problem raised by Strotz (1955) does not arise when preferences are stationary and satisfy

limited independence. Axiom (K3) rules out complete indifference between levels of current

consumption. It ensures that the preference order is non-trivial. Note that sensitivity follows

from strict monotonicity (U2′).

Koopmans’ (1960) result is that (K1)-(K3) are sufficient for % to have a recursive utility

representation. In such cases, we say that utility is recursively separable.

Recursive Representation Theorem. Suppose a preference relation % satisfies (U1)-

(U4) and (K1)-(K3) on a path-connected set X ⊆ E+. If % has a continuous utility repre-

sentation U , then there are continuous functions u and W with U(C) = W (u(πC), U(SC)).

Further, W is non-decreasing in both u and U .

Proof. Take C0 ∈ X and define u(z) = U(z, C0). Note that u(z) = u(y) is equivalent to

U(z, C0) = U(y, C0) which is in turn equivalent to U(z, C) = U(y, C) for all C by (K2).

Since U depends only on u(z), there is a function F with U(z, C) = F (u(z), C).

Now if U(C) = U(C ′), U(z, C) = U(z, C ′) for all z by (K1). Thus F depends only on

U(C) and there is a function W with U(z, C) = W (u(z), U(C)).

To show W is non-decreasing, consider z and z′ with u = u(z) ≥ u(z′) = u′. Then

U(z, C0) ≥ U(z′, C0) so U(z, C) ≥ U(z′, C) for all C. Applying the definitions to the last

inequality yields W (u, U(C)) ≥ W (u′, U(C)). A similar argument shows that W is non-

decreasing in U . Continuity follows from the following lemma. �

Lemma 2. If U is continuous, then u and W are continuous.

Proof. Since u(z) = U(z, C0), u is continuous.

We next show W is separately continuous in u and U . Fix u = u(z) and let Un ↑ U . Take

C1 and C with U(C1) = U1 and U(C) = U . Let {C(t)} be a path from C1 to C. Since X is a

path-connected space, C(t) ∈ X . Clearly U({C(t)}) ⊇ [U1, U ] since U({C(t)}) is connected.

Take tn with U(C(tn)) = Un. Let t∗ be any cluster point of {tn}. As C(tn) → C(t∗), we

have W (u, Un) = U(z, C(tn))→ U(z, C(t∗)) = W (z, U). This also applies to Un ↓ U , so W

is continuous in U for fixed u. Similarly, W is continuous in u for fixed U .

Now let (un, Un) → (u, U). Define vn = supm>n un, Vn = supm>n Un, yn = infm>n un, and

Yn = infm>n Un, so

W (vn, Vn) ≥ W (un, Un) ≥ W (yn, Yn).
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Fix m, then for n ≥ m:

W (vm, Vn) ≥ W (vn, Vn) ≥ W (u, U).

By letting n→∞ and using the continuity of W in U , we see that

W (vm, U) ≥ lim
n
W (vn, Vn) ≥ W (u,C).

Note that limW (vn, Vn) exists since {W (vn, Vn)} is a non-increasing sequence. Now let

m→∞ to get the result. Using a similar argument on (yn, Yn) completes the proof. �

Remark. If monotonicity axiom (U2) is strengthened to (U2′), then W is strictly increasing

in future utility.

Koopmans (1960) and Koopmans, Diamond, and Williamson (1964) assume % is con-

tinuous with respect to the supremum norm topology. However, as noted subsequently in

Koopmans (1972b), this type of uniform continuity is not required for the Recursive Repre-

sentation Theorem.

The Recursive Representation Theorem assumes % has a continuous utility representation.

If X is an order interval and (U2) is strengthened to (U2′), then the Monotone Representation

Theorem implies utility is recursive.

Corollary 1. If X is an order interval in E+ and (U1), (U2 ′), (U3), (U4), and (K1)-(K3)

hold for a preference order %, then % has a recursive utility representation.

If X is a separable space, then this is also holds by the Separable Representation Theorem.

For example, consider the space `∞(α) endowed with the ‖·‖β-norm, and having β > α. This

is a separable space and pathwise-connected normed linear space. Therefore, any preference

order on `∞(α) which is β-continuous, stationary, obeys the limited independence, and

sensitivity axioms must have a recursive representation.

The role of Koopmans’ sensitivity axiom is to insure a non-trivial representation of U in

terms of the aggregator. If sensitivity fails, then utility functions such as U(C) = Λ(C) on

X = `∞+ are admissible where Λ is a Banach limit.32

Banach limit. A Banach limit is a linear functional such that:

(B1) Λ(C) ≥ 0 if C ≥ 0;

32 A Banach limit is an example of a pure charge on `∞.



20 ROBERT A. BECKER AND JOHN H. BOYD III

(B2) Λ(C) = Λ(SNC) for N = 1, 2, . . . );

(B3) lim inft ct ≤ Λ(C) ≤ lim supt ct.

An example of a utility function which can be extended to a Banach limit on `∞+ is the

average consumption function

U(C) = lim
T→∞

1

T

T∑
t=1

ct.

Banach limit utility functions yield W (u, U) = U by property (B2) and are not really

represented by the aggregator: any Banach limit satisfies this recursive relation.33

Koopmans’ Recursive Representation Theorem says that a recursively separable utility

function determines a unique recursive aggregator W . Streufert (1990) investigated the

converse: does W uniquely determine U?34 This uniqueness problem can be cast as an

investigation of the uniqueness of a solution U to Koopmans’ equation given W . Streufert

introduces the notions of biconvergence and tail-sensitivity to provide an affirmative answer

to this issue. Biconvergence of U is defined for a fixed order interval [0, ω] ⊆ E+, where ω

has strictly positive components. Biconvergence requires both that a “poor” consumption

profile cannot be preferred to a program eventually offering a “tail” of ω (upper convergence)

and a “good” consumption profile cannot be preferred by another eventually offering 0

consumption in the tail (lower convergence). The biconvergence property of U is invariant

to continuous monotonic transformations of U . The basic intuition for tail insensitivity is

similar. The difference between the two concepts is that tail sensitivity is an ordinal property

of the utility scale. Streufert proved that under the biconvergence hypothesis, U is the unique

“admissible” solution to Koopmans’ equation in W . His converse proposition says that if U

is not biconvergent, then Koopmans’ equation has multiple “admissible” solutions. In this

sense, biconvergence is the weakest condition delivering a unique solution to the Koopmans

equation in W .

Fix an order interval [0, ω] ⊆ E+. The choice ω = (α, α2, . . . ), α ≥ 1, is possible. We

assume ωt > 0 for each t, so ω � 0. The function U is said to be upper convergent over [0, ω]

if for every C ∈ [0, ω]

lim
T→∞

U(πTC, STω) = U(C).

33 Looking ahead to Part IV, a Banach limit utility function has δβη = 1 whereas we require δβη < 1 for
the aggregator framework.

34 The aggregator was first taken as a primitive for preferences on `∞+ in Lucas and Stokey (1984). The
subsequent analysis of Boyd (1990) extended their results to larger sequence spaces. Lucas and Stokey as
well as Boyd attacked the uniqueness problem. Their approach is the heart of Part IV.
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The limit always exists since U is monotone and (πTC, STω) ≥ (πT+1C, ST+1ω). The func-

tion U is said to be lower convergent over [0, ω] if for every C ∈ [0, ω]

lim
T→∞

U(πTC, ST0) = U(C).

The limit always exists since U is monotone and (πTC, ST0) ≤ (πT+1C, ST+10). The function

U is said to be biconvergent over [0, ω] if it is both upper and lower convergent over [0, ω].

Notice that if U is a Banach limit, it is not lower convergent: let C = (1, 1, . . . ), then

Λ(πTC, ST0) = 0 for each T and Λ(C) = 1. We also notice here that 0 has a special role in

the definition of biconvergence. In particular, the TAS form with logarithmic felicity cannot

be lower convergent on [0, ω].

Let U1 : E+ → [0,∞] denote a utility representation of %. U1 need not be monotonic

or stationary, hence it does not have to equal U — the primitive in Koopmans’ Recursive

Representation Theorem. Such a function U1 is a general solution to Koopmans’ equation

(here u(z) = z) if there exists a sequence of subutility functions (U2, U3, . . . ) such that for

all C ∈ E+ and for all t ≥ 0 :

Ut(S
t−1C) = W (ct, Ut+1(StC)).

A general solution U1 is admissible if for all C ∈ [0, ω], U(0) ≤ U1(C) ≤ U(ω).

The following example drawn from Streufert (1990) illustrates the need for the admissi-

bility qualification. Let ω = (1, 1, . . . ) and U have the TAS form

U(C) =
∞∑
t=1

δt−1ct.

U is biconvergent over [0, ω]. The aggregator W (c, U) = c+δU has the inadmissible solution

defined by

Ut(S
t−1C) = U(St−1C) + δ−t

when St−1C ∈ c00, and

Ut(S
t−1C) = U(St−1C)

otherwise. Streufert’s first theorem is:35

35 Streufert (1990, p. 81) notes the aggregator is strictly increasing in future utility if utility is weakly
increasing, after-period-1 separable, and stationary. The maximin utility function generates an aggregator
that is only non-decreasing in future utility. We use a weaker form of limited independence than Streufert.
For this reason we require (U2′) instead of (U2).
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Biconvergence Theorem. If U is biconvergent over [0, ω], and % satisfies (U2 ′), then

for any admissible general solution U1 to Koopmans’ equation, U1 = U over [0, ω].36

Proof. Choose C ∈ [0, ω]. Admissibility implies for each t ≥ 1 that Ut+1(StC) ≥ U(0),

otherwise W strictly increasing in future utility would imply

U1(πt0, StC) = W (0, . . .W (0, Ut+1(StC)) . . . )

< W (0, . . .W (0, U(0, 0, . . . )) . . . ) = U(0),

which would contradict admissibility. Similarly, admissibility implies that for each t,

Ut+1(StC) ≤ U(Stω).

These two bounds on Ut+1(StC) imply for each t that:

U(πtC, Stω) = W (c1, . . .W (ct, U(Stω)) . . . )

≥ W (c1, . . .W (ct, Ut+1(StC)) . . . ) = U1(C)

≥ W (c1, . . .W (ct, U(St0)) . . . ) = U(πtC, St0).

Biconvergence implies these upper and lower bounds on U1(C) both converge to U(C).

Therefore U and U1 agree on [0, ω]. �

Streufert also proved a converse to the Biconvergence Theorem.

Non-Biconvergence Theorem. Suppose that for every C ∈ [0, ω] and every period

t ≥ 1, U(πtC, [0, Stω]) is an interval. Then if U is not biconvergent over [0, ω], there exists

an admissible solution U1 to Koopmans’ equation in W such that U1 6= U over [0, ω].

Proof. See Streufert (1990, Theorem B). �

Banach limits provide a family of non-biconvergent utility function examples. Any TAS

utility function which is not bounded below on [0, ω] is not lower convergent, hence it also

must fail to enjoy the biconvergence property. The aggregator for these utility functions

cannot uniquely determine U over [0, ω]. The question of uniqueness is further discussed in

Part IV where the focus is on the aggregator as the primitive concept.

36 After Streufert (1990, pp. 83-84).



RECURSIVE UTILITY: DISCRETE TIME THEORY 23

Koopmans’ (1972b) explored the existence of a recursive utility representation of a pref-

erence order. He showed that under a slight strenghtening of (K2), so that all complemen-

tarities between adjacent periods consumption could be excluded, utility must be additive

across time periods. Given the stationarity axiom, he concluded that utility took the TAS

form. The key to the additive representation is the following axiom:

Extended Independence.

(K2′) % exhibits extended independence; for all z, w, z′, w′, C, and C ′,

(z, w, C) % (z′, w′, C) if and only if (z, w, C ′) % (z′, w′, C ′).

Extended Independence says that preferences over the first two periods consumption are

independent of consumption from period three onwards. The axiom responsible for the TAS

representation is:

Complete Independence.

(K2∗) % exhibits complete independence; axioms (K2) and (K2′) hold.

Additive Representation Theorem. Let E = Aω for some constant sequence ω =

ωcon > 0. Endow E with the topology induced by the lattice norm. Assume % satisfies

axioms (U1)-(U4), (K1), (K2∗), and (K3) on E+ with ω � 0. Then there is a continuous

TAS utility function U representing % on E+. Moreover, U is unique up to a positive linear

transformation.

The proof of Koopmans’ Additive Representation Theorem is lengthy. However, the

essential idea is to construct U in several steps. First, define a utility function UT on the set

of all programs C ∈ E+ having STC = (zT+1, zT+2, . . . ) where Z is a fixed reference program.

Consumption paths restricted to this subspace may be ranked by an induced preference order

on a subset of RT
+; standard utility representation theorems for independent factor spaces

may be invoked to yield an additive utility function on this subspace.37 Stationarity implies

that utility on RT
+ has the form

UT (c1, c2, . . . , cT ) =
T∑
t=1

δt−1u(ct). (10)

Koopmans then extends UT to the subspace of programs which are eventually constant, i.e.

STC = (c, c, . . . ) for some T . Let Xcon denote the space of all eventually constant programs.

37 See Koopmans (1972a), Debreu (1960), and Fishburn (1970).
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The tail of any program C ∈ Xcon is shown to contribute an amount δTu(c)/(1 − δ) to the

utility of a program in (10). Thus C ∈ Xcon implies

U(C) = U(c1, . . . , cT , S
T−1C)

= u(c1) + δu(c2) + · · ·+ δT−1u(cT ) +
δTu(c)

1− δ
.

The function U is unique up to a positive linear transformation. The final step is to show

that U may be extended to E+.38 An application of the Additive Representation Theorem

occurs for the case ωcon = (1, 1, . . . ) implying Aω = `∞. An interesting open question arises:

Does the Additive Representation Theorem hold for a general AM -space with unit? For

example, can the Additive Representation Theorem be extended to cases of growth in ω as

would occur if ω = (α, α2, . . . ) and α > 1?39

Variations on the recursive axiom system (K1)-(K3) are possible. Rader (1981) shows that

adding homotheticity to the hypotheses of the Additive Representation Theorem implies

the felicity function u is homogeneous or logarithmic. The homogeneous case was also

conjectured by Hicks (1965). Epstein (1986) introduces the class of implicity additive utility

functions as an alternative to the additive class based on the Independence Axiom. In his

setup, the Independence Axiom states that the marginal rate of substitution between period

t and t′ consumption depends on the entire consumption path but only through the value

of its lifetime utility U(C).40 In Epstein’s formulation, there is scope for a limited degree of

complementarity between adjacent periods consumption. He also weakens the stationarity

postulate in order to express the idea that the passage of time does not have an effect

on preferences so long as lifetime utility is constant. This means U(c, C) = U(C) where

(c, C) ≡ C ′ is the program defined by c′1 = c, c′t = ct−1 (t ≥ 2). The resulting utility

function has the form

U(C) =
∞∑
t=1

(δ(u))t−1g(ct, u),

where u ≡ U(C), δ(u) ∈ (0, 1), g(·, u) : R+ → R is strictly concave, continuously differen-

tiable with a positive derivative, and g(0, u) = 0.

38 A careful reading of Koopmans’ Proposition 3 (pp. 89-91) shows that his requirement that C be bounded
in utility is equivalent to 0 ≤ C ≤ λωcon for some λ > 0. This holds here since E is the principal ideal
generated by ωcon. The lattice norm topology coincides with the supremum norm topology utilized by
Koopmans.

39 This case has recently been answered in the affirmative by Dolmas (1991).
40 Epstein defines the marginal rate of substitution in terms of the Gâteaux derivatives of U in each coordinate
direction. We return to this approach in Part III on impatience.
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Several writers have explored the consequences of eliminating the Independence Axiom.

Majumdar (1975) gave the example

U(C) = w(c1, c2, . . . , cT ) +
∞∑
t=1

δ(t)vt(c1, c2, . . . , ct),

defined on `∞ where δ(t) ≥ 0 for all t,
∑
δ(t) = 1, w : RT

+ → R+ is continuous, quasi-concave,

non-decreasing in each argument, and {vt} is a sequence of quasi-concave, continuous func-

tions from Rt
+ to R+, each vt being strictly increasing in all its arguments and the sequence

being uniformly bounded above. There is special significance accorded to consumption in

periods 1, . . . , T as measured by the w function. Moreover, history counts since the felic-

ity given by ct at time t depends on the consumption enjoyed in all previous periods. He

argues U is τ(`∞, `1)-continuous under the maintained conditions. Clearly, this U is not

representable by an aggregator when w is non-trivial and vt = v and δ(t) = (1− δ)δt−1.41

III. Impatience, Discounting and Myopia

An impatient consumer or planner prefers earlier rather than later consumption. The ques-

tion of discounting versus non-discounting of future consumption as a property of a planner’s

preference order has been a central theme in capital theory dating to the seminal paper of

Ramsey (1928). He argued (p. 543) that discounting was a “practice which is ethically in-

defensible and arises merely from the weakness of the imagination.” It should be recalled

that Ramsey also investigated the implications of discounting in his model. Indeed, his het-

erogeneous agent model operated with different agents distinguished by differences in their

subjective discount rates. Ramsey seemed to distinguish the property of discounting for a

social planner from the presumption of discounting on the part of private agents. Ramsey’s

view of impatience for consumers was in tune with classical perspectives in capital theory.

Various writers (e.g. Böhm-Bawerk (1912), Fisher (1930), and Rae (1834)) advanced the

impatience hypothesis. Modern research workers have distinguished several forms of impa-

tience.42 The terms discounting, time perspective, and myopia have been used in slightly

different senses in the literature.

The infinite horizon structure of the choice problem raises problems regarding the presence,

degree and forms taken by impatience. We will focus on three aspects of these questions. We

41 The factor (1− δ) arises in order for {δ(t)} to satisfy the normalization
∑
δ(t) = 1.

42 See Epstein (1987b) for an excellent discussion of impatience.
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discuss the linkage between continuity of the preference order and myopia in Section One.

In Section Two, we review Koopmans’ notions of impatience and time perspective, following

this with a discussion of marginal impatience along a consumption profile in Section Three.

Section Four concludes this part with a brief discussion of myopia and the properties of

support prices for optimal allocations in an exchange economy.

1. Myopia and the Continuity Axiom

The basic intuition for the link between continuity and impatience may be seen by looking

at the definition of continuity for a utility function U : R∞+ → R where R∞ has the product

topology. The function U is continuous in the product topology at C ∈ R∞+ if for every

ε > 0 there is a δ > 0 such that the relation C ′ ∈ N(C, δ) implies |U(C ′) − U(C)| < ε.

Here C ′ ∈ N(C, δ) means there are t1, t2, . . . , tk such that |c′tk − ctk | < δ (k = 1, . . . , K).

The choice K = 1 is allowed so U is continuous at C if Cn → C coordinatewise implies

U(Cn)→ U(C). If U is continuous at C in this topology, then U is not sensitive to variations

in consumption ct for t sufficiently large. This is a strong impatience idea: utility is sensitive

to changes over finite segments of the planning horizon. For t sufficiently large, the variations

in consumption are “discounted” to yield no significant incremental contribution to utility.

Total utility is dominated by what happens in only a finite number of periods.

Continuity of U (or the underlying preference order) in the product topology on E+ = R∞+
has important economic consequences. We recall Diamond’s (1965) Impossibility Theorem.

A utility function U is equitable if for each C,C ′ ∈ E+, U(C) ≥ U(C ′) if and only if U(ΠC) ≥
U(ΠC ′) where Π is the permutation operator mapping E into E acting on finitely many

components of a vector. Diamond proved that there did not exist an equitable and strictly

monotone utility function that is continuous in the product topology. In other words, equity

is incompatible with product continuity.43 You cannot treat all periods equally if you have

product continuous preferences. Epstein (1987b) argues that the correct interpretation of

Diamond’s impossibility result is that the choice of the product topology has strong ethical

significance given it precludes the possibility of an equitable preference order.

Svensson (1980) gives a disconnected metric topology for A(ω) with ω = (1, 1, . . . ) and

exhibits a preference ordering that is continuous in it. This preference order is monotonic and

equitable. His ordering is based on a generalization of the overtaking criterion, and cannot

be represented by a utility function. Campbell (1985) also explored the equity question

43 If (U2) is employed instead of (U2′), then the maximin functional is an equitable utility function. However,
it is not lower semi-continuous in the product topology.
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by introducing a stronger topology than the product topology. His aim was to construct a

topology suitable for application of the classical Weierstrass Theorem promising the existence

of maximal elements of a utility function which is upper semi-continuous over a compact

constraint set. His topology is a metric topology but it does not turn the commodity space

into a topological vector space. He also demonstrates an impossibility theorem: a preference

relation % satisfying (U1) is continuous in Campbell’s topology if and only if X ∼ Y for all

programs X, Y . In his setup, continuity is inconsistent with any form of the monotonicity

axiom.

Diamond’s Impossibility Theorem was one of the first indications that the continuity

axiom on % in the discrete time finite horizon case carried behavioral implications when

translated to the infinite horizon setting. Mathematically speaking, the problem is that the

topologies utilized in intertemporal analysis are not identical when there is an open-ended

horizon. A finite dimensional vector space admits only one (up to equivalence) Hausdorff

linear topology whereas the sequence spaces under consideration here admit several Haus-

dorff linear topologies. For instance, in the case of `∞, convergence of a sequence in the sup

norm topology implies convergence in the Mackey topology and Mackey convergence implies

convergence in the relative product topology inherited from R∞. The converse is false: there

exist sequences convergent in the product topology which are not convergent in the Mackey

topology. Similarly, there exist Mackey convergent sequences which are not convergent in

the relative product topology. Economically speaking, the continuity axiom (U4) takes on

a different meaning depending on the choice of a topology for a given commodity space.

In the `∞ case, a product continuous % is Mackey continuous and a Mackey continuous

% is sup norm continuous. As before, the converse implications are false. In the product

topology case, only finitely many periods really count in determining whether or not two

sequences are close to one another. In the Mackey case, there are restrictions on infinitely

many coordinates in order to test if two sequences are close to one another.44

Bewley (1972) suggested an explicit link between the Mackey topology and impatience.

Brown and Lewis (1981), Stroyan (1983), and Raut (1986) formalized myopia concepts as

continuity requirements. Their ideas were later subsumed in a general framework offered

by Aliprantis, Brown and Burkinshaw (1989). They define myopia in terms of the order

structure of the commodity space. We will pursue their approach in order to connect it to

preference orders and utility functions typically encountered in capital theory.

44 A program Y is in a Mackey neighborhood of X if there is an ε > 0 and Γk = {γtk}∞t=1 ∈ c0 with
k = 1, . . . ,K such that supk {supt |γtk(ytk − xtk)|} ≤ ε.
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Brown and Lewis (1981) focused on the space `∞. They call % strongly myopic if for all

X,X ′, and Y, Y ′, and Z ∈ E+, X � Y implies X � Y + (πN0, SNZ) for all N sufficiently

large.45 In words, if Z is pushed far enough into the future, adding it to Y does not

change the preference for X over Y . This type of myopia follows from continuity in the

product topology. However, there is also an order theoretic property that is hidden in the

definition of a strongly myopic preference relation. The sequence of consumption programs

{(πN0, SNZ)}∞N=1 is decreasing: (πN0, SNZ) ↓ 0. The sequence Y N = (Y + (πN0, SNZ))

is also a decreasing sequence: Y N ↓ Y . It follows that |Y N − Y | = |(πN0, SNZ)| ↓ 0 as

N →∞. But this is an example of an order convergent sequence. Brown and Lewis’ strong

myopia idea can be recast as stating X � Y implies X � Y N for N suffficiently large when

Y N is order convergent to Y (written Y N o→ Y ).46

Sawyer (1988) considers upward and downward myopia. Upward myopia coincides with

Brown and Lewis’ definition of strong myopia. Downward myopia occurs whenever X � Y

implies for all Z there exists an N such that(πNX,SNZ) � Y . Downward myopia says that

if Z is pushed far enough into the future, then eventually switching plans from X to Z does

not change the preference for X over Y . In particular, if Z offers a lower consumption than

X in the distant future, then the preference for X over Y is not reversed since the reductions

in consumption are sufficiently postponed. Downward myopia also implies the truncation

condition proposed by Prescott and Lucas (1972, p. 417). Their condition follows from

downward myopia if Z = 0. The maximin order clearly fails to satisfy the downward myopia

hypotheses of either Sawyer or of Prescott and Lucas. Sawyer calls a preference order fully

myopic if it is both upward and downward myopic. Clearly downward myopia also contains

an order convergent property along the same lines as the Brown and Lewis strong myopia

condition. Sawyer ultimately rejects the downward myopia property on grounds that it is

implausible. He argues that downward myopia implies all future consumption beyond some

date would be exchanged for an arbitrarily small first period consumption followed by no

consumption into the indefinite future.

The fundamental insight of Aliprantis, Brown and Burkinshaw (1989) is to take order

continuity of a utility function as the defining characteristic of myopia. The advantage of

this approach is to free myopia from direct topological considerations by basing it soley on

45 Brown and Lewis (1981) also studied a form of weak myopia where the vector Z is a constant sequence
in the strong myopia definition.

46 Formally, a net {Xα} in a Riesz space E is order convergent to some element X, denoted Xα o→ X,
whenever there exists another net {Y α} with the same indexed set such that Y α ↓ 0 and |Xα −X| ≤ Y α

holds for each α.
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the lattice structure of the commodity space.

A utility function U is order convergent whenever a net Xα o→ X in E+ implies U(Xα)
o→

U(X). An order convergent utility function is said to be a myopic utility function. An order

convergent utility function is taken as the abstraction of the myopia properties introduced

by Brown and Lewis (1981) and their followers. We say U is τ -myopic if U is τ -continuous.

In general, there exist myopic utility functions which are not τ -myopic on a space E and

there are τ -myopic utility functions which are not myopic.47

The topology τ for a Riesz dual system is order continuous if τ is locally solid and Xα o→ X

implies Xα τ→ X. Symmetric Riesz dual systems form an important class of spaces with an

order continuous topology.48 Another important example of an order continuous topology

arises in the case of an order continuous Fréchet lattice. These are spaces which are Fréchet

lattices and have an order continuous topology. A space E is a Fréchet lattice if it is a

complete metrizable locally-convex solid Riesz space. The space R∞ is a Fréchet lattice

endowed with the dF -metric; the dual pair 〈R∞, c00〉 is a symmetric Riesz space and hence

the dF -metric induces an an order continuous topology.

Remark. If U : E+ → R is τ -myopic and τ is an order continuous topology, then U is

myopic.

Proposition 2. If E is a Fréchet lattice and U is myopic, then U is τ -myopic.

Proof. In a Fréchet lattice every τ -convergent sequence has an order convergent subse-

quence.49 �

The following Corollary is an obvious application of the above results.

Corollary 2. A utility function U : R∞+ → R is myopic if and only if it is dF -myopic.

The Corollary implies that the maximin utility function is not myopic on R∞+ since it is

not lower semicontinuous. This agrees with economic intuition. Another application yields a

corollary to Diamond’s Impossibility Theorem: there does not exist an equitable and strictly

monotone myopic utility function on R∞+ .50

Myopic utility functions enjoy a strong continuity property on Aω.

47 Aliprantis, Brown and Burkinshaw (1989, pp. 121-122).
48 See Aliprantis, Brown and Burkinshaw (1989, p. 102).
49 Aliprantis, Brown and Burkinshaw (1989, p. 121 and 125).
50 It seems reasonable to conjecture on the basis of the maximin example that there are no equitable and
monotonic myopic utility functions.
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Proposition 3. If U : R∞+ → R is a myopic utility function, then U is ‖ · ‖∞-myopic on

Aω.51

Proof. Let ω ∈ R∞+ , and let {Y n} be a sequence contained in Aω such that ‖Y n−Y ‖∞ → 0.

Put

εn = sup{‖Y i − Y ‖∞ : i ≥ n}.

Notice that εn ↓ 0 and that |Y n−Y | ≤ εnω for all n. Since εnω ↓ 0, it follows that Y n o→ Y ,

and so by the order continuity of U , we see that U is ‖ · ‖∞-continuous at Y . �

Proposition 2 implies that every myopic utility function on `∞+ is sup norm continuous.

A myopic utility function on `∞+ implies the underlying preference order satisfies the strong

myopia condition proposed by Brown and Lewis (1981). The definition of myopia requires

that U(Xα)
o→ U(X) for any net {Xα} o→ X. The Brown and Lewis strong myopia property

only demands order convergence for a specially chosen sequence. A similar comment applies

to Streufert’s biconvergence criterion for utility functions on [0, ω]. It is clear that myopia

implies biconvergence. The truth of the converse implication is open.52

2. Impatience and Time Perspective

Koopmans (1960) introduced a formal notion of impatience. Given a recursive utility func-

tion U with aggregator W and felicity u, a program C meets the impatience condition if

u(c1) > u(c2) implies

W (u(c1),W (u(c2), U(S2C))) > W (u(c2),W (u(c1), U(S2C))).

Reversing the timing of first and second period felicity from consumption lowers lifetime

utility if it places the second (smaller) felicity in the first period. This is impatience over

one period; it can be easily extended to any initial segment of the horizon. Koopmans’

definition of impatience is a form of eventual impatience since changes in consumption levels

over a finite number of periods are reflected in the condition.

The standard TAS form of the utility function satisfies this impatience property as δ ∈
(0, 1). Koopmans went on to demonstrate that the postulates (U1)-(U4) and (K1)-(K3)

imply the existence of “zones of impatience” in the three dimensional payoff space (u1, u2, U ◦

51 This is adapted from Aliprantis, Brown and Burkinshaw (1989, p. 122).
52 Streufert (1990, p. 83) argues that biconvergence of U is equivalent to product continuity on the space
[0, ω1]× [0, ω2]× · · · where each factor space has the discrete topology.
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S2), where U ◦S2(C) = U(S2C). Koopmans found that the limit of the utility of a sequence

of programs defined by shifting an arbitrary reference program and the repeated insertion

of a fixed N -period consumption segment equals the utility of the program consisting of the

infinite repetition of the N -period consumption vector. Koopmans (1960, p. 115) expressed

surprise that his notion of impatience arose as an implication of his axiom system since the

presumption in the literature dating back at least to Böhm-Bawerk was that impatience was

a psychological characteristic of economic agents.53

Koopmans, Diamond, and Williamson (1964) explored another notion of time prefer-

ence which they called time perspective. In words, a recursive utility function exhibits weak

(strong) time perspective if the difference in the utility levels achieved by two programs does

not increase (decrease) if the programs are delayed one period and a common first period

consumption is inserted. The use of utility differences in the definition meant that this was

a cardinal property of utility whereas the impatience concept was ordinal. However, they

did demonstrate the existence of an ordinally equivalent representation of U satisfying the

axioms (U1)-(U4) and (K1)-(K3), labelled U∗, such that U∗ exhibited the weak impatience

property. Sawyer (1988) also investigated impatience properties of the utility function along

the lines initiated by Koopmans. He showed the existence of a class of stationary recur-

sive utility functions which are not downwardly myopic but nevertheless exhibited zones of

impatience analogous to those found by Koopmans. Streufert (1990) also drew an analogy

between time perspective and biconvergence: the utility levels realized in the future from

following the paths ω and 0 respectively appear to the observing agent at the beginning of

the horizon as though they converge as time passes. Time perspective becomes the economic

analog of tunnel vision.

3. The Norm of Marginal Impatience Conditions

Any two distinct TAS utility functions which are dF -continuous on R∞+ are myopic by the

Corollary to Proposition 1. Suppose U1 and U2 are TAS functions with identical felicity

functions but have δ1 > δ2. Both have identical myopia properties but the first has a higher

discount factor than the second. Intuition suggests that U1 discounts the future less than

U2. Put differently, U2 is more impatient than U1. The Norm of Marginal Impatience was

introduced by Becker, Boyd and Foias (1991) as a refinement of the myopia idea. They

were motivated to consider this sharper notion of impatience in order to demonstrate an

equilibrium existence theorem for a model with heterogeneous agents having utility functions

53 Recall, the utility function is ‖ · ‖∞-continuous in this setup.
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drawn from the recursive class as well as allowing some non-recursive elements. We present

two additional axioms below in order to develop the norm of marginal impatience. The

axioms are placed directly on the utility function. For simplicity, we only consider the case

U : R∞+ → R for U dF -continuous. We note that a utility function satisfying (U1)-(U4) is

quasiconcave. For the remainder of this section we use the stronger monotonicity axiom

(U2′) without further mention.

Concavity.

(U5) U is a concave function.

One implication of property (U5) is that the left-and right-hand partial derivatives of the

utility function exist. These derivatives are denoted by U−t (C) and U+
t (C) respectively. The

right-hand directional derivative of U at C in the direction of Et = (0, 0, . . . , 0, 1, 0, . . . )

where 1 is in the tth place, is defined as

U+
t (C) = lim

ε→0+

U(C + εEt)− U(C)

ε
.

The left-hand partial derivative is defined by substituting ε→ 0− in the limit. The concavity

of U implies U+
t (C) ≤ U−t (C). If equality holds, we write Ut(C) for the common value and

call this the partial derivative of U at C with respect to the tth coordinate. For technical

reasons, we also require the following axiom:

Differentiability.

(U6) The partial derivative Ut of U exists for every t.

We start developing the Norm of Marginal Impatience by fixing a reference program ω

which is strictly positive. The order interval [0, ω] plays a crucial role in the following. We

view [0, ω] as the relevant domain of U in the sense that [0, ω] strictly contains all feasible

allocations. We assume that U is a recursive utility function. If U has a C1 aggregator, then

Ut exists and is found by the formula

Ut(C) = W2(c1, U(S1C))W2(c2, U(S2C)) . . .W2(ct−1, U(St−1C))W1(ct, U(StC)), (1)

where W1 and W2 are the partials of W with respect to the first and second coordinates.

The next condition restricts the marginal rates of impatience between adjacent time pe-

riods over a portion of the program space. Given t, t + 1, we define the marginal rate of

impatience at C, Rt,t+1(C), by the relation

1 +Rt,t+1(C) = Ut(C)/Ut+1(C).54
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This definition yields the usual measure of the marginal rate of substitution in adjacent

periods along a fixed utility contour.

In the differentiable aggregator case we use (1) to obtain

Ut
Ut+1

=
W1(ct, U(StC))

W2(ct, U(StC))W1(ct+1, U(St+1C))

Note that Rt,t+1(C) = R1,2(St−1C). We will denote R1,2 by R. Since S2C only affects R1,2

through U(S2C), R can alternatively be regarded as a function of c1, c2, and U3. The specific

condition we impose on utility is given below.

Bounded Norm of Marginal Impatience Condition. There is a δ ∈ (0, 1) such that

1/δ = supt=1,2,...{1 +Rt,t+1(C) : C ∈
∏∞

τ=1[0, ωt], ct+1 = ct}.

The supremum of the 1 + Rt,t+1, which depends only on the ordinal properties of U , is

called the norm of marginal impatience. We require this to be uniformly bounded on a

subset of the program space containing, in particular, all feasible consumption programs.

The TAS case is easily seen to satisfy this condition; the norm of marginal impatience is the

reciprocal of the discount factor. The norm of marginal impatience restricts the marginal

rate of substitution in a different way than properness. Typically, proper preferences cannot

satisfy the Inada condition at 0 whereas this may occur with a bounded norm of marginal

impatience.

Many aggregators also satisfy 0 < δ ≤ W2 ≤ δ̄ < 1, a strong version of Koopmans time

perspective axiom. In this case, we also have

Ut
Ut+1

≤ W1(z, U(StC))

δW1(z, U(St+1C))
. (2)

when ct = ct+1 = z. If C is a constant program, then the marginal rate of impatience at C

is bounded from above by 1/δ. But other sequences are admitted in the Bounded Norm of

Marginal Impatience Condition. Suppose ω is a constant sequence with ωt = w. The ratio

on the right hand side of (2) can blow up only as z → 0+ since z ≤ w. This does not happen

if there is a number M such that

lim
z→0+

W1(z, y)

W1(z, y′)
≤M. (3)

54 The concavity and strict monotonicity properties of u imply ut > 0. Notice that the Rawlsian utility
function v(C) = inf{ct : t = 1, 2, . . . } violates the strict monotonicity axiom and vt can be 0.
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for y and y′ in the range of the corresponding utility function U . The commonly used

aggregators satisfy (3). For the TAS class, M = 1 will do. The EH utility function and

corresponding aggregator satisfies (3). Consequently, the EH utility function satisfies the

Bounded Norm of Marginal Impatience Condition.55 Thus two EH utility functions may be

consistent with the same myopia property and possess different norms of marginal impa-

tience.

One implication of the Bounded Norm of Marginal Impatience Condition is recorded

below. This result says that the rate of marginal impatience is not increasing over a portion

of the program space.

Proposition 4. Let U be a utility function satisfying the Bounded Norm of Marginal

Impatience Condition. Then

sup
t=1,2,...

{1 +Rt,t+1(C) : C ∈
∞∏
τ=1

[0, ωt], ct+1 ≤ ct} = 1/δ.

Proof. Let C ∈ [0, ω] with ct+1 ≤ ct. Consider ϕ(x, y) = u(c1, c2, . . . , ct−1, x, y, ct+2, . . . ).

Notice there exists α ∈ [ct+1, ct] such that ϕ(α, α) = u(C) = ϕ(ct, ct+1). Introduce the

indifference curve y = ψ(x) such that ϕ(x, ψ(x)) = u(C). It is easy to show −ψ′(x) =

ϕx(x, y)/ϕy(x, y) ≡ θ(x, y) for y = ψ(x) and thus θ(x, ψ(x)) is nonincreasing in x. For

α = ψ(α) and ct ≥ α we have θ(ct, ct+1) = θ(ct, ψ(ct)) ≤ θ(α, ψ(α)) ≤ 1/δ. �

Steady-state impatience may be defined by considering the marginal rate of substitution

along constant programs. We defer discussion of steady-state impatience to Part V on

optimal growth. There, we explore the connection between steady-state impatience and

stability of optimal paths.

4. Myopia and Support Prices

Consider the commodity-price duality (`∞, ba) where `∞ has the sup norm topology. As

noted in Part II, a linear functional on this space may take the form of a pure charge (e.g.

a Banach limit). Countably additive elements of ba have `1 representations denoted by P .

The value of a commodity X is 〈X,Π〉. A natural question in equilibrium analysis and

55 In Part IV, the aggregator is taken as primitive. Many other aggregators satisfy (3). For example, the
KDW aggregator will satisfy this restriction.
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welfere economics is when does a price system in ba have an `1 representation?56 There are

clear indications in the literature that some form of myopia and the possible representation

of prices by elements of `1
+ are related properties. For example, Prescott and Lucas (1972)

as well as Brown and Lewis (1981) introduced their myopia hypotheses in order to solve

this problem.57 We will illustrate the way in which this problem arises in an example of

an exchange economy developed by Becker (1991b). The basic model is originally due to

Peleg and Yaari (1970). We exploit the β-myopia of the utility functions of consumers in

the sample economy to derive `1
+ price supports for a weak Pareto optimal allocation.

The economy is defined by the triple {〈Aω, A′ω〉,%i, ω}, where %i is the preference relation

of consumer i (i = 1, . . . ,m) and ω is the social endowment vector. We assume ω =

(α, α2, . . . , αt, . . . ) and α ≥ 1. The space Aω is the principal ideal generated by ω. The

commodity-price duality is specified by the Riesz dual system 〈Aω, A′ω〉 where A′ω is the α-

norm dual of Aω. The maintained assumptions on preference orders are (U1), (U2′), (U3),

and (U4). An allocation is a nonnegative m-vector (X1, . . . , Xm) in the commodity space

satisfying
∑m

i=1 Xi ≤ ω. A Pareto optimal allocation has the usual meaning.

Proposition 5. Let {〈Aω, A′ω〉,%i, ω} be an exchange economy where each agent has a

β-myopic utility representation of %i. If (X1, . . . , Xm) is a Pareto optimal allocation and

β > α, then there is a P ∈ `1
+ such that for each i

∞∑
t=1

ptzt/β
t ≥

∞∑
t=1

ptxit/β
t for all Z %i Xi.

Proof. The maintained assumptions on preferences imply each agents preference order

is uniformly α-norm proper (Proposition 2.1). Mas-Colell’s Supporting Price Theorem58

implies there is a price system P in ba such that 〈Z, P 〉 ≥ 〈Xi, P 〉 for all Z %i Xi. Since

each agent has strictly monotone preferenes, P > 0 and ω is extremely desirable for all i, it

follows that P is β-myopic on [0, ω] and order continuous on Aω (see Aliprantis, Brown and

Burkinshaw (1989, p. 147). Therefore, since the β-norm dual is isomorphic to `1 as noted

in Part II, P has a weighted `1 representation. �

56 Is there an economic interpretation of price systems which are pure charges? See Gilles (1989) and Gilles
and LeRoy (1989) for an affirmative answer.

57 There is a voluminous literature on the price representation problem dating back to early work on in-
tertemporal efficiency. Radner (1967) seems to have been the first to raise the question.

58 Mas-Colell (1986, p. 1048).
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Many recursive utility functions are β-myopic, so Proposition 4 applies to exchange

economies with those preferences. Characterizing support properties of Pareto optimal allo-

cations in heterogeneous agent economies with capital accumulation (both with a maximum

sustainable stock and sustainable growth) for recursive utility maximizing agents would seem

to be a natural follow-up problem for investigation.

IV. The Aggregator Approach to Recursive Utility

In Part II, we saw that recursive preferences give rise to an aggregator function that combines

present consumption (or felicity from present consumption) and future utility to obtain

present utility. This chapter takes that aggregator as a primitive.

In fact, there is a pre-Koopmans literature on recursive utility that uses the aggregator

exclusively. An early example is Fisher (1930). Much of Fisher’s analysis is carried out using

a 2-good model. Utility depends on both current and future income. Early in the book, he

explains that income is ideally thought of in utility terms, thus we should really think of

current felicity and future utility combining to yield overall utility. This is precisely what

the aggregator function does. Hayek (1941) also took the aggregator as a primitive, and

even addressed stability issues in this framework.

The first modern paper to take the aggregator as primitive was Lucas and Stokey (1984).

They started with an aggregator, and showed how a recursive utility function could be

constructed from an aggregator function W , under the assumption that W was bounded.

They then used this to characterize equilibria and examine stability when consumers have

recursive preferences.

Taking the aggregator as fundamental provides detailed information about preferences in

a compact form. First, it is a lot easier to specify an aggregator than a recursive utility

function. Koopmans, Diamond and Williamson (1964) found an aggregator that had a

specific property (increasing marginal impatience), but the corresponding utility function

cannot be explicitly computed. It does not have a closed form expression. Second, the

aggregator, with its sharp distinction between current and future consumption, often makes

it easier to incorporate hypotheses about intertemporal behavior. It can be quite difficult

to translate axioms into usable conditions on the utility function. The normality conditions

used by Lucas and Stokey (1984), Benhabib, Jafarey and Nishimura (1988), Benhabib,

Majumdar and Nishimura (1987) and Jafarey (1988) to study equilibrium dynamics are most
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easily imposed directly on the aggregator.59 Finally, if we impose behavioral conditions as

axioms, there is the question of their consistency. With aggregators, this is never a problem.

Once the utility function exists, consistency is automatic.

Of course, the use of the aggregator does partially obscure the actual utility function and

its properties. Fortunately, the aggregator usually contains all the information required to

construct the utility function. Lucas and Stokey (1984) made the aggregator approach feasi-

ble when they showed that the utility function could be reconstructed when the aggregator

is bounded. Boyd (1990) introduced a refinement of the Contraction Mapping Theorem, the

Weighted Contraction Theorem, which applies to a much broader class of utility functions

that includes many standard examples. For many aggregators, this is enough to recover the

utility function. Aggregators that allow −∞ as a value require further treatment. Boyd

combined the weighted contraction with a “partial sum” technique to construct the utility

functions.

We will follow Boyd’s (1990) treatment to find the utility function. In Section One,

we examine the basic properties we require of the aggregator. Section Two gives a general

existence and uniqueness theorem for the corresponding utility function when the aggregator

is bounded below. Section Three illustrates the use of this theorem, and Section Four

employs Boyd’s “partial sum” technique to obtain existence for general aggregators.

1. Basic Properties of the Aggregator

As in the preceding parts, we assume that there is a single all-purpose good available in each

time period for simplicity. The aggregator maps X×Y to Y, where X is a subset of R+ =

{x ∈ R : x ≥ 0} and Y is a subset of R. Aggregators will appear in the second argument,

so W must take values in Y. Recall the projection π and shift S are given by πC = c1 and

SC = (c2, c3, . . . ) for C ∈ R∞. The key property that makes a utility function U recursive

is that U(C) = W (πC,U(SC)). Intuitively, we can find U by recursively substituting it

in this equation. This substitution is performed by the recursion operator TW defined by

(TWU)(C) = W (πC,U(SC)). Thus (TNW0)(C) = W (c1,W (c2, . . . ,W (cN , 0)) . . . )). The

recursive utility function is the unique fixed point of TW .

The most familiar aggregator is W (c, y) = u(c)+δy, which yields the additively separable

utility function U(C) =
∑∞

t=1 δ
t−1u(ct). Obviously, U(C) = u(c1)+δU(SC). Other aggrega-

tors include the KDW (Koopmans, Diamond and Williamson, 1964) aggregator W (c, y) =

59 Epstein (1987a) has discovered conditions on the utility function that imply a similar normality condition
in models with continuous-time recursive utility.
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(1/θ) log(1+βcγ+δy), and modified Uzawa (1968) aggregator W (c, y) = (−1+y) exp[−u(c)]

used by Epstein and Hynes (1983). This last aggregator yields the utility function60

U(C) = −
∞∑
t=1

exp[−
∑t

τ=1 u(cτ )]

from Part II since(
−1−

∞∑
t=2

exp[−
∑t

τ=2u(cτ )]

)
exp[−u(c1)] = −

∞∑
t=1

exp[−
∑t

τ=1u(cτ )].

This form is particularly intriguing since consumption only affects discounting, but does

not seem to yield direct utility. Epstein (1983) considers a discrete-time formulation that

permits uncertainty. His generalized Uzawa aggregator is W (c, y) = (v(c) + y)e−u(c). The

Epstein-Hynes form is the special case v(c) = −1.

Without loss of generality, we may assume 0 ∈ Y. In fact, if there is a y ∈ Y with

W (0, y) = y, we may even assume W (0, 0) = 0. If W (0, y) 6= y, then U(0) = y. Now

consider the utility function Û(C) = U(C) − U(0). The adjusted aggregator, Ŵ (c, y) =

W (c, y + U(0)) − U(0) yields this utility function since Ŵ (c1, Û(SC)) = W (c1, U(SC)) −
U(0) = U(C) − U(0) = Û(C). Both aggregators generate equivalent utility functions, and

Ŵ (0, 0) = 0.

When applied to the Epstein-Hynes (EH) aggregator, this yields

U(0) = W (0, U(0)) = (−1 + U(0))e−u(0),

so U(0) = 1/(1−eu(0)). The adjusted aggregator is then Ŵ (c, y) = [y−eu(0)/(1−eu(0))]e−u(c)−
1/(1− eu(0)). Curiously, the new utility function can be written

Û(C) =
∞∑
t=1

e−tu(0)

[
1− exp

(
−

t∑
τ=1

[u(cτ )− u(0)]

)]
,

which is the discounted sum of functions depending on past consumption. Note the contrast

with the original form of the utility function where consumption seemed to only affect

discounting. This form also shows us that even though recursive utility is forward-looking,

the functional form may superficially appear to be backward-looking.

60 Epstein and Hynes actually work in continuous time, but this is obviously a discrete version of their utility
function.
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Aggregator. A function W : X×Y → Y is an aggregator if:

(W1) W is continuous on X×Y and increasing in both c and y.

(W2) W obeys a Lipschitz condition of order one, i.e., there exists δ > 0 such that |W (c, y)−
W (c, y′)| ≤ δ|y − y′| for all c in X and y, y′ in Y.

(W3) (TNWy)(C) is concave in C for all N and all constants y ∈ Y.

When W is differentiable the Lipschitz bound in (W2) is δ = supW2(c, y). This uniformly

bounded time perspective is similar to the time perspective studied axiomatically by Koop-

mans (1960) and Koopmans, Diamond and Williamson (1964). It insures that future utility

is discounted by at least δ. In the additively separable case, W2 is the discount factor. In

the EH case, the fact that W is increasing in c implies u′ ≥ 0 since W ≤ 0. The Lipschitz

bound then becomes eu(0). We do not yet impose δ < 1 since we may want to consider

undiscounted or even upcounted models.

The sole purpose of condition (W3) is to guarantee concavity of the utility function. It is

not required for the existence results. Curiously, the aggregator need not be jointly concave

in c and y for the associated utility function to be concave. Although the EH aggregator is not

concave, the corresponding utility function U(C) = −
∑∞

t=1 exp[−
∑t

τ=1 u(cτ )] is concave.

Epstein previously (1983) gave sufficient conditions for the concavity of generalized Uzawa

utility functions. In the EH case, u′′ < 0 is sufficient. More generally, when the utility

function is the limit of the functions TNW (0)(C), (W3) insures concavity is inherited by U .

Thus,

Lemma 3. Suppose (W3) holds and TNW (0)(C)→ U(C). Then U is concave on its domain.

If, in addition, W is strictly concave in c and strictly increasing in y, then U is strictly

concave. Conversely, if U is concave, condition (W3) holds for all y in the range of U .

2. The Existence of Recursive Utility

When trying to construct the utility function, the first problem we confront is what domain

to use. Obviously, the utility function will live on a subset of R∞+ . The question is, which

subset? Since one of the motivations for studying recursive utility is to admit non-degenerate

equilibria, we must use subsets that are appropriate for equilibrium problems — linear

spaces.61

61 An alternative, as used by Streufert (1990), is to focus purely on capital accumulation problems. This
allows him to further restrict the size of the subsets, and thus expand the range of aggregators he can use.
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Even in the additively separable case, it is unreasonable to expect the utility function to

be defined on all of R∞. Consider the additively separable aggregator
√
c+ δy where δ < 1.

The utility function only makes sense when
∑∞

t=1 δ
t−1
√
ct converges. This will not happen

for all vectors in R∞+ . For example, the sum does not converge when ct = δ−2t. This is

where the weighted `∞ spaces come in. In this case, the utility function will only exist on

`∞+ (β) for β < δ−2. Our strategy will be to find a β so that the utility function exists and is

β-continuous on `∞+ (β).

Let A ⊂ R∞ with π(∪∞N=0S
NA) ⊂ X.62 Both the shift S and projection π are continuous

in any topology on A that is stronger than the relative product topology, as are the β-

topologies. Given a positive function ϕ, continuous on A, let C be the space of continuous

functions from A to Y, and Cϕ be the corresponding space of ϕ-bounded functions.63 Since

all the functions involved are continuous, TW : Cϕ → C.

Continuous Existence Theorem. Suppose the topology on A is stronger than the

relative product topology, W : X × Y → Y obeys (W1) and (W2), ϕ is continuous,

W (πC, 0) is ϕ-bounded, and δ‖ϕ ◦ S‖ϕ < 1. Then there exists a unique U ∈ Cϕ such

that W (πC,U(SC)) = U(C). Moreover, (TNW0)(C)→ U(C) in Cϕ.

Proof. Since W is increasing in y, the recursion operator TW is increasing. Now

|TW (0)|/ϕ(C) = |W (c1, 0)|/ϕ(C) <∞

because W (πC, 0) is ϕ-bounded. Finally,

TW (ξ + Aϕ) = W (c1, ξ(SC) + Aϕ(SC))

≤ W (c1, ξ(SC)) + Aδϕ(SC) ≤ TW ξ + Aδ‖ϕ ◦ S‖ϕϕ(C).

The Weighted Contraction Theorem, with θ = δ‖ϕ◦S‖ϕ < 1, shows that TW is a contraction,

and has a unique fixed point U .

Now consider ‖U(C) − (TNW0)(C)‖ϕ ≤ δN‖U(SNC)‖ϕ ≤ ‖U‖ϕ(δ‖ϕ ◦ S‖ϕ)N . As the last

term converges to zero, (TNW0)(C)→ U(C). �

In fact, the full force of (W1) was not employed in the proof. The aggregator need not be

increasing in c for the theorem to hold.

62 This insures that the recursion operator always makes sense on C(A; Y).
63 See the appendix for details.
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3. Examples with the Aggregator Bounded Below

The easiest application of the Continuous Existence Theorem is to a bounded aggregator

with δ < 1 and A = `∞+ (1). Take ϕ as the constant 1, and use the product topology. As in

Lucas and Stokey (1984), this yields a recursive utility function that is not only β-myopic

for all β ≥ 1, but also continuous in the relative product topology on `∞+ (1). In particular,

this applies to the EH aggregator with u(0) > 0.

Another application is to W with 0 ≤ W (c, 0) ≤ A(1 + cη) as in the case where W (c, 0)

has asymptotic exponent or asymptotic elasticity of marginal felicity (see Brock and Gale,

1969) less than η > 0 with δβη < 1. In this case, take A = `∞+ (β) and ϕ(C) = 1 + ‖C‖ηβ.

Then ‖ϕ ◦ S‖ϕ = βη, and the recursive utility function is β-myopic. This applies to the

aggregator W (c, y) = cη + δy. The utility function
∑∞

t=1 δ
t−1cηt is continuous on each `∞+ (β)

for δηβ < 1.

When 0 ≤ W (c, 0) ≤ A(1 + log(1 + c)), a similar argument shows that U is β-myopic for

all β <∞. Take γ > 0 such take δ(γ + log β)/γ < 1 and set ϕ(c) = γ + log(1 + c). Then

δϕ(‖SC‖β) = δγ + δ log(1 + ‖SC‖β)

≤ δγ + δ log(1 + β‖C‖β)

≤ δγ + δ log β(1 + ‖C‖β)

≤ δγ + δ log β + δ log(1 + ‖C‖β)

≤ γ + δ log(1 + ‖C‖β) ≤ ϕ(‖C‖β).

In fact, when W is concave in c, W (c, 0) ≤ W (1, 0) + α(c− 1) for some supergradient α.

(If differentiable, α = W1(1, 0).) Thus we may set ϕ(C) = 1 + ‖C‖β for a β-myopic utility

function when the aggregator is concave in c with δβ < 1.

Relaxing the condition βηδ < 1 risks losing existence on `∞+ (β). Again, the additively

separable case makes this clear. Let W (c, y) = cη + δy and take β = δ−1/η. The utility

function cannot be defined when C is given by ct = βt. No utility function can be constructed

from the aggregator on `∞+ (β). A smaller space must be used.64

64 However, Streufert (1987) has discovered cases where βηδ > 1 and U exists. These seem to require
W22 < 0, and may not be continuous on `∞+ (β).
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4. Unbounded Aggregators

The Continuous Existence Theorem can also be used indirectly to deal with aggregators

that are not bounded below, such as W (c, y) = log c+ δy. These obey:

(W1′) W is increasing in both c and y, upper semicontinuous on X ×Y, continuous when

c > 0 and y > −∞ and obeys W (c,−∞) = W (0, y) = −∞ for all c ∈ X and y ∈ Y.

For aggregators satisfying (W1′), paths that are near 0 can pose problems for the continu-

ous existence theorem. When W (c, y) = log c+δy these problems result in a utility function

that is upper semicontinuous but not lower semicontinuous. However, they are not severe

enough to preclude existence of the utility function.

To circumvent the problems posed by paths that are too close to zero, Boyd (1990)

considers a region that excludes them as the set A. More precisely, choose γ ≤ β <∞, and

set γ‖C‖ = inf |ct/γt−1| if 0 < γ and 0‖C‖ =∞. Then take A = `∞+ (β, γ) = {C ∈ R∞+ : 0 <

γ‖C‖ and ‖C‖β < ∞}. This is the set of paths that have a growth rate between γ and β.

Thus `∞+ (β, 0) is just our old friend `∞+ (β).

To make this clear, consider the logarithmic case. For any such path, γ‖C‖γt−1 ≤ ct ≤
‖C‖ββt−1. Thus

∞∑
t=1

δt−1[(t− 1) log γ + γ‖C‖] ≤
∞∑
t=1

δt−1 log ct ≤
∞∑
t=1

(t− 1)δt−1[(t− 1) log β + ‖C‖β].

Since
∑∞

t=1 δ
t−1 log ct is squeezed between convergent series, it converges. However, the

limit need not be continuous since the convergence is not uniform. We can get β-upper

semicontinuity. It is enough to show this for each ball {C ∈ `∞+ (β) : ‖C‖β ≤ κ}. On this

ball,
∑T

t=1 δ
t−1(log ct− (t−1) log β− log κ) has non-positive terms. Each of the partial sums

is upper semicontinuous, and so is the limit. Since the limit differs from the original utility

function by a constant, the utility function is upper semicontinuous too. In fact, we have

escaped the lower bound on consumption by taking partial sums. Some sequences may even

have utility −∞. Nonetheless, the logarithmic case is well-behaved.

We are now forced to admit −∞ as a possible value for utility. This causes some unpleas-

antness. Amazingly, U(C) = −∞ satisfies the recursion too. The obvious solution is not

the only one. Fortunately, we can restrict our attention to `∞+ (β, γ) and see that this is not

a reasonable solution.
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The general case is similar. Intuitively, we expect to obtain the utility function by recursive

substitution, as the limit of (TNWu)(C) = W (c1,W (c2, . . . ,W (cN , u) . . . )) with u constant. In

fact, under appropriate conditions, the Continuous Existence Theorem applies on `∞+ (β, γ),

yielding a unique ϕ-bounded utility function Ψ. Of course, the iterates TNWu converge to Ψ

on `∞+ (β, γ).

By using a process analogous to partial summation, Ψ can be extended to a utility function

on all of `∞+ (β). This extension is upper semicontinuous and recursive. Further, it is the

only recursive upper semicontinuous extension of Ψ to `∞+ (β).

Upper Semicontinuous Existence Theorem. Suppose W : X×Y → Y obeys (W1′),

the Lipschitz condition (W2) holds whenever W is finite, and there are increasing functions

g and h with g(c) ≤ W (c, 0) ≤ h(c). Set ϕ(C) = max{h(‖C‖β),−g(γ‖C‖)} and suppose

ϕ > 0 with δ‖ϕ◦S‖ϕ < 1 for some β > γ > 0 with β ≥ 1. Then there exists a unique U that

is ϕ−bounded on `∞+ (β, γ), obeys W (πC,U(SC)) = U(C) and is β−upper semicontinuous

on `∞+ (β).

Proof. First, temporarily give A = `∞+ (β, γ) the discrete topology. As all functions are

continuous there, and W (c, 0) is clearly ϕ-bounded, the Continuous Existence Theorem

applies, yielding a unique ϕ-bounded recursive utility function Ψ : `∞+ (β, γ)→ R.

Second, let Z be an arbitrary element of `∞+ (β, γ) and define the “partial sums” on all of

`∞+ (β) by

ΨN(C;Z) = [TNWΨ(SNZ)](C) = W (c1,W (c2, . . . ,W (cN ,Ψ(SNZ)) . . . )).

Now for Z,Z ′ ∈ `∞+ (β),

|ΨN(C;Z)−ΨN(C;Z ′)| ≤ δN |Ψ(SNZ)−Ψ(SNZ ′)|

≤ δNM [ϕ(SNZ) + ϕ(SNZ ′)]

≤M ′(δ‖ϕ ◦ S‖ϕ)N

for some M ′. The first step uses the Lipschitz bound (W2). The second uses the ϕ-

boundedness of Ψ on `∞+ (β, γ), and the third uses the fact that ϕ(SNZ) ≤ (‖ϕ ◦S‖ϕ)Nϕ(Z)

for any Z ∈ `∞+ (β, γ). It follows that if limN→∞ΨN(C;Z) exists, it must be independent of

Z. Note that for C ∈ `∞+ (β, γ), ΨN(C;C) = Ψ(C), so limN→∞ΨN(C;Z) exists on `∞+ (β, γ)

and is equal to Ψ there.
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The third step is to show U(C) = limN→∞ΨN(C;Z) exists and is β-upper semicontinuous

on all of `∞+ (β). For κ arbitrary, take C ∈ `∞+ (β) with ‖C‖β ≤ κ and set zt = κβt−1. Since

ct ≤ zt, ΨN(C;Z) is a decreasing sequence. Its limit U(C), which is also its infimum, must

exist. Further, each of the ΨN is the composition of non-decreasing β-upper semicontinuous

functions, so their infimum U(C) is also β-upper semicontinuous on {C : ‖C‖β ≤ κ}. Since

upper semicontinuity is a local property, U is β-upper semicontinuous on all of `∞+ (β).

The next step is to show that U is recursive. If πC = 0 or if U(SC) = −∞, (W1′) implies

W (πC,U(SC)) = −∞ = U(C). Otherwise, we have

W (πC,U(SC)) = W (πC, lim
N→∞

ΨN(SC;SZ))

= lim
N→∞

W (πC,ΨN(SC;SZ))

= lim
N→∞

ΨN+1(C;Z) = U(C).

Therefore W (πC,U(SC)) = U(C) for all C ∈ `∞+ (β).

The last step is uniqueness. Let Φ be a β-upper semicontinuous recursive utility function

that is ϕ-bounded on `∞+ (β, γ). Since Ψ is unique, Φ,Ψ and U agree on `∞+ (β, γ). When

zt = ‖C‖ββt−1, C ≤ Z and so Φ(C) ≤ ΨN(C;Z). Thus Φ(C) ≤ limN→∞ΨN(C;Z) = U(C).

If ct = 0 for some t, U(C) = −∞ = Φ(C). If ct > 0 for all t, set zt = max{γt−1, ct}
and consider the sequence Cn = (c1, . . . , cn, zn+1, zn+2, . . . ). By construction, Φ(Cn) =

Ψn(C;Z). Since γ < β, Cn → C in the β-topology. By upper semicontinuity of Φ, Φ(C) ≥
limn→∞Ψn(C;Z) = U(C). It follows that Φ(C) = U(C), and thus U is the unique such

function. �

Aggregators with −1 + min{0, log c} ≤ W (c, 0) ≤ a + log(1 + c) fall into this frame-

work. Given δ < 1 and β ≥ 1, the constant a may be assumed large enough that

δ(a+log β)/a < 1. Take γ = 1 and let ϕ(C) = max{a+log(1+‖C‖β), 1−min{0, log 1‖C‖} }.
As δϕ(SC)/ϕ(C) ≤ δ(a + log β)/a < 1 since 1‖C‖ ≤ 1‖SC‖ and ‖SC‖β ≤ β‖C‖β,

the utility function exists on `∞+ (β, 1) for any β. In other cases, upcounting (δ > 1)

may be allowed. When −cη ≤ W (c, 0) ≤ 0 with η < 0, we set ϕ(C) = γ‖C‖η so

δϕ(SC)/ϕ(C) ≤ δβη ≤ δγη < 1. As η < 0, βη < 1 and there are γ that permit δ > 1. The

Upper Semicontinuous Existence Theorem applies to these examples.

As Boyd notes, the “partial sum” approach works on a wider range of aggregators than

considered in the theorem. For example, if there is a function υ(c) with υ(c) = W (c, υ(c)),

“partial sums” can be defined on {C : ‖C‖1 ≤ κ} by [TNWυ(κ)](C). These form a decreasing

sequence, so their limit is an upper semicontinuous function U(C). As W (c1, U(SC)) =
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lim[TN+1
W υ(κ)](C) = U(C), this yields a recursive utility function. This recursive utility

function may fail to be lower semicontinuous. One such example is W (c, y) = −1 + e−cy

so that υ(c) = −1/(1 − e−c) and utility is U(C) = −
∑∞

t=1 exp(−
∑t

τ=0 cτ ). Consideration

of the sequence Cn = (c1, . . . , cn, 0, . . . ), where ct = 2 log(t + 1)/t, shows that this utility

function is not lower semicontinuous since U(Cn) = −∞ but U(C) > −∞. Note that δ = 1

in this example.

V. Properties of Optimal Paths

Once we have a utility function, we can ask whether optimal paths exist. In the recursive

case, the same conditions that guarantee existence of the utility function will also yield

optimal paths, and a value function that satisfies Bellman’s Equation. Our next task is to

characterize these paths via Euler equations and a transversality condition, and then inves-

tigate their properties. Are optimal paths monotonic? Do they enjoy a turnpike property?

Section One shows that optimal paths exist, and are continuous in an appropriate topology.

Section Two shows how dynamic programming may be used on recursive utility, and that the

value function is the unique continuous solution to Bellman’s equation. The transversality

condition is taken up in Section Three. Monotonicity and the turnpike property are examined

in Section Four. We conclude with a brief discussion of equilibrium models and the long-run

distribution of income in Section Five.

1. The Existence and Sensitivity of Optimal Paths

Existence is quite straightforward. The existence of optimal paths is just one of the useful

facts that follow from continuity of the utility function and compactness of the feasible set.

When the aggregator defines a continuous utility function, a modern version of Weierstrass’

theorem, the Maximum Theorem (see Berge, 1963; Klein and Thompson, 1984), can be used

to show continuity of optimal paths.65 For example, when the budget set (and hence the

optimal path) depends continuously on a parameter vector ω, the maximizer correspondence

m(ω) will be continuous.

Maximum Theorem. Suppose B(ω) is β−lower semicontinuous in ω and β−compact-

valued.

65 Magill and Nishimura (1984) also use the Maximum Theorem to obtain continuous policy functions with
recursive utility.
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(1) If U is β−upper semicontinuous, there exists a C∗ ∈ B(ω) such that U(C∗) =

sup{U(C) : C ∈ B(ω)}.
(2) If U is β−continuous, the value function J(ω) = supU(B(ω)) is continuous and the

maximizer correspondence m(ω) is upper semicontinuous. Further, if U is strictly

concave, then m(ω) is a continuous function of ω.

This form of the maximum theorem will also demonstrate continuity of the optimal paths

and value function. The remainder of this section shows how to employ the β-topologies in

the one-sector model. The first step is to show that the feasible set is actually compact. This

turns out to be fairly easy, since the β-topology often coincides with the product topology,

which is quite easy to work with. In fact, Lemma 1 of section II.4 shows that the β-topology

and product topology coincide on any α-bounded set whenever α < β.

One application is to a one-sector model of optimal capital accumulation (Ramsey model).

In the classical Ramsey model, the technology is described by a (gross) production function.

The production function f is a continuous, non-decreasing function f : R+ → R+. Note that

f(0) ≥ 0. In the time-varying Ramsey model, the technology is described by a sequence,

{ft}∞t=1, of such production functions. Given this production technology, the set of feasible

paths of accumulation from initial stock k (the production correspondence) is F(k) = {C ∈
R∞+ : 0 ≤ kt ≤ ft(kt−1), k0 = k}. The set of feasible consumption paths (the consumption

correspondence), B(k) is {C ∈ R∞+ : 0 ≤ ct ≤ ft(kt−1) − kt for some K ∈ F(k)}. Define

f t inductively by f 1 = f1 and f t = ft ◦ f t−1. The path of pure accumulation is {f t(k)}∞t=1.

Both B(k) and F(k) are closed in the product topology and B(k) ⊂ F(k) ⊂
∏∞

t=1[0, f t(k)].

As this last set is compact by Tychonoff’s Theorem, B(k) is also compact in the product

topology.

When lim[f t(k)/αt] < ∞, both F(k) and B(k) are α-bounded subsets of `∞+ (β). More

generally, we call the technology α-bounded if F(k) is α-bounded. This happens in the case of

exogeneous technical progress where ft(x) = entxρ. The path of pure accumulation grows at

asymptotic rate exp{n/(1−ρ)}, so the technology is α-bounded for α > exp{n/(1−ρ)}. As

any concave production function obeys f(x) ≤ f(a)+ξ(x−a) whenever ξ is a supergradient

at a (e.g. ξ = f ′(a)), it is α-bounded for any α > ξ. Thus, any stationary, concave,

production technology is α-bounded for all α > f ′(∞). Provided U is upper semicontinuous

on `∞+ (β) for some β > α, Lemma II.4.1 and the Maximum Theorem combine to show

existence of at least one optimal path.66

66 In fact, we could use the weaker condition that U be continuous on `∞+ (Θ) with Θ the path of pure
accumulation, i.e., θt = f t(k). Continuity of U can be obtained for a general class of aggregators and



RECURSIVE UTILITY: DISCRETE TIME THEORY 47

Let’s temporarily confine our attention to the case where there is a unique optimal capital-

consumption path {kt(k), ct(k)}∞t=1. This will occur if the production function is concave and

the utility function strictly concave. Define the consumption policy function g(k) = c1(k).

The policy function gives the optimal consumption level as a function of the previous period’s

capital stock. The maximum theorem guarantees that g exists and is continuous. There

is an associated capital policy function h(k) = f(k) − g(k). The optimal paths are then

ct(k) = g(kt−1(k)) with c1 = g(k) and kt(k) = h(kt−1(k)) = f(kt−1(k))− g(kt−1(k)).

To obtain continuity of the value function and policy functions, it is enough to show

that the production correspondence F(k) is product lower semicontinuous since the set of

feasible paths is the continuous image of the production correspondence. For k′ near k,

F(k′) ⊂ F(k + 1). Locally, everything takes place in an α-bounded set, and we may use the

product topology.

For lower semicontinuity, it is enough to show lower semicontinuity for the basic open

sets G(Y, ε,N) = {X ∈ R∞+ : |xt − yt| < ε for all t < N}. Let ε,N > 0 be given. Take

Y ∈ F(k). By continuity of the ft, we can choose δ with |f t(k′) − f t(k)| < ε for all

t ≤ N when |k − k′| < δ. For any such k′, take the path xt = min{yt, f t(k′)}. Note that

f t(k′) + ε > f t(k) ≥ yt for t ≤ N , so yt ≥ xt > yt − ε for all t ≤ N . Hence X ∈ G(Y, ε,N).

Further, ft+1(xt) = min{ft+1(yt), f
t+1(k′)} ≥ xt+1 and x1 ≤ f1(k′), so X ∈ F(k′). It follows

F(k′) ∩ G(Y, ε,N) 6= ∅ whenever |k − k′| < δ, establishing lower semicontinuity.

An immediate application is to demonstrate β-continuity of optimal paths as a function of

initial capital stock. One consequence is that ct(k) is continuous in k for each t. In general,

this only holds for β > α. For β = α, it can fail even in models with additively separable

utility. Amir, Mirman and Perkins (1991) and Dechert and Nishimura (1983), using a non-

convex stationary technology, find that optimal paths converge to zero if the initial capital

stock is below some critical value. Optimal paths starting above the critical value converge

to a steady state that lies above the critical value. They assume a maximum sustainable

stock, so α = 1 will do. The optimal path is not norm (α = 1) continuous because of the

long-run jump as you cross the critical value.

Variations on this are possible. Stronger forms of the maximum theorem allow the utility

function to depend on the parameter ω. If the bounds of Part IV hold uniformly in ω, the

optimal paths will be continuous in ω.67 A simple example is an optimal growth model with

production functions by using upper and lower approximations like those used by Streufert (1990). Al-
ternatively, a brute force calculation will also often show W (c1,W (c2, . . . ), . . . ) converges uniformly to a
continuous utility function in this case.

67 Details may be found in Boyd (1986).
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additively separable utility W (c, y) = u(c) + δy. Take (k, δ) = ω ∈ Ω = R+ × [0, δ] with a

strictly concave, bounded u and δ < 1. With a stationary concave production function f ,

a unique optimal path {ct(k, δ)} exists. Further, {ct(k, δ)} is β-continuous, hence ct(k, δ) is

a continuous function of (k, δ) for all (k, δ) ∈ Ω. A non-separable example in a similar vein

is the EH form W (c, y) = [−1 + eδ−u(c)y]. When δ < u(0), this yields a β-continuous utility

function for any β > α.

When the turnpike property holds, β-continuity of optimal paths will imply α-continuity.

In fact, if optimal paths starting in some interval of initial stocks converge to the same

steady state, α-continuity follows on that interval.

2. Recursive Dynamic Programming

The limited separability in recursive utility is sufficient to do dynamic programming. Not

surprisingly, the weighted contraction theorem is also useful here. The usual Principle of

Optimality applies, yielding Bellman equation J(k) = sup{W (c, J(f(k)−c) : 0 ≤ c ≤ f(k)}.
Define the Bellman operator by

(Tξ)(k) = sup{W (c, ξ(f(k)− c)) : 0 ≤ c ≤ f(k)}.

When W is continuous on [0,∞), the maximum theorem shows that the Bellman operator

maps continuous functions into continuous functions. Further, the supremum is actually

attained for each continuous function ξ. A function solves the Bellman equation if and only

if it is a fixed point of the Bellman operator. A contraction mapping argument will now

show that the Bellman operator has a unique fixed point, which must be the value function.

Suppose u is continuous on R+, and let ϕ > 0 be increasing and continuous with

W (f(k), 0)/ϕ(k) bounded. The Bellman operator is clearly monotone. Further,

(T0)(k) = sup{W (c, 0) : 0 ≤ c ≤ f(k)} = W (f(k), 0) ≤ ϕ(k).

Finally,

T (ξ + Aϕ)(k) = sup{W (c, ξ(f(k)− c)) + Aϕ(f(k)− c)} ≤ (Tξ)(k) + Aδϕ(f(k))

since ϕ is increasing. Provided that δ supx ϕ(f(x))/ϕ(x) < 1, the conditions of the weighted

contraction theorem hold. In sum, we have the following proposition:



RECURSIVE UTILITY: DISCRETE TIME THEORY 49

Proposition 6. Suppose W (·, 0) is continuous on R+ and there is an increasing continuous

ϕ > 0 with θ = δ supx[ϕ(f(x))/ϕ(x)] < 1 and W (f(x), 0)/ϕ(x) bounded. Then the Bellman

equation has a unique continuous solution.

The fact that T is a contraction actually gives more information. Consider ξn(k) =

T n(0)(k). Then ‖ξn − TJ‖ϕ ≤ θ‖ξn−1 − J‖ϕ. By induction, we obtain ‖ξn − J‖ϕ ≤ θn‖ξ0 −
J‖ϕ = θn‖J‖ϕ since ξ0 = 0. Thus ξn → J in Cϕ. This fact allows us to numerically

approximate the value function to any desired degree of accuracy.

A class of models covered by proposition 1 are those where f(x) ≤ α + βx with β > 1

and u(c) = cη for 0 < η ≤ 1. Set ϕ(x) = λ + xη where λ obeys 1 + αη/λ ≤ βη. Then

ϕ(f(x)) ≤ λ + (α + βx)η ≤ λ + αη + βηxη ≤ βη(λ + xη) = βηϕ(x). The Bellman equation

has a unique solution provided βηδ < 1.

One example is the case where u(c) = cη and f(k) = βk with 0 < η ≤ 1 and βηδ < 1.

This satisfies the hypothesis of Proposition 1. The value function has the form Akη. The

constant A can be determined by substituting this functional form in the Bellman equation,

and solving for A. The fact that Akη solves the Bellman equation verifies that it is the value

function since Proposition 1 guarantees that solutions to the Bellman equation are unique.

Streufert (1990) provides an alternative to contraction mapping methods. He considers

the case where there are best and worst paths. These yield upper and lower partial sums. He

considers the case where they both converge to the recursive utility function (biconvergence).

He shows that the value function is the unique admissible solution to the Bellman equation,

where admissibility rules out certain obviously absurd functions.

3. Characterization of Optimal Paths

We call an optimal path (C∗, K∗) regular if c∗t > 0, k∗t > 0 for all t. For simplicity, this

section focuses on regular optimal paths. The analogous results for non-regular paths may

be found in Boyd (1990).

Optimal paths for the Ramsey model are characterized in this section. A useful envelope

theorem and the Euler equations are developed first. We then proceed to the main result

that the Euler equations, together with the transversality condition, completely characterize

optimal paths for a large class of aggregators.

The following assumptions will be maintained throughout this section. The utility function

U obeys U(0) = 0 and is concave and ϕ-bounded on `∞+ (β) for some ϕ with ‖ϕ ◦S‖ϕ < 1/δ.

In addition, the feasible set B is generated by an α-bounded technology for some α < β given
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by a sequence continuous, concave, increasing production functions {ft} with ft(0) = 0. As

a consequence, the theorems of the previous sections apply. The value function J(y) is

defined and continuous in initial income y = f1(k). When U is differentiable with respect

to consumption at time t, denote ∂U/∂ct by Ut. Except as noted, assume U is differentiable

at each time.

Envelope Theorem. The value function J is non-decreasing and concave. If U is differ-

entiable with respect to consumption in period 1, and optimal paths are regular, then J is

differentiable and obeys dJ(y)/dy = U1(C) where C is any optimal path from y.

Proof. The value function is increasing since the feasible set grows when the initial stock

increases. Concavity follows since U is concave and αB(k)+(1−α)B(k′) ⊂ B(αk+(1−α)k′)

for 0 ≤ α ≤ 1.

Differentiability is established as follows.68 Let h > 0, H = (h, 0, . . . ), and let C be an

optimal path with initial income y so that J(y) = U(C). Clearly, J(y + h) ≥ U(C + H)

and thus J(y + h) − J(y) ≥ U(C + H) − U(C). Dividing by h and taking the limit shows

that the right-hand derivative J ′(y+) satisfies J ′(y+) ≥ U1(C). Since C is regular, c1 is

non-zero. We may then repeat this with −c1 < h < 0, to show J ′(y−) ≤ U1(C) ≤ J ′(y+).

As J is concave, J ′(y+) ≤ J ′(y−), thus J ′(y) = U1(C). �

Corollary 3. Suppose U is recursive, the aggregator is differentiable, and optimal paths

are regular. Then dJ(y)/dy = W1(c1, U(SC)) where C is any optimal path from y.

Henceforth, assume that U is differentiable at each time t, and that the optimal path is

regular. Now let C∗ be optimal and let K∗ be the associated sequence of capital stocks. Set

BN = {K ∈ B : kN ≥ k∗N}. Let VN(K) = U(f1(k0) − k1, . . . , fN(kN−1) − kN , fN+1(kN) −
k∗N+1, fN+2(k∗N+1) − k∗N+2, . . . ). By the Principle of Optimality, K∗ solves the problem of

maximizing VN over BN . Setting the derivative with respect to kt equal to zero for t =

1, . . . , N − 1, we obtain the necessary conditions

Ut+1(C∗)f ′t+1(k∗t )− Ut(C∗) = 0.

These are referred to as the Euler Equations .

Since Ut(C)/Ut+1(C) = 1 +Rt,t+1(C), we can rewrite the Euler equations as:

f ′t+1(k∗t ) = 1 +Rt,t+1(C∗) = 1 +R(St−1C∗).

68 This method is adapted from Mirman and Zilcha (1975).
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I.e., the net marginal product of capital is equal to the marginal rate of impatience. In the

additively separable case 1 +Rt,t+1(C) = u′(ct)/δu
′(ct+1), so these reduce to the usual Euler

equations.

The Euler equations, are instrumental in proving the Transversality Theorem.

Transversality Theorem. Suppose U is recursive and differentiable at each time. A

regular path C∗ is optimal if and only if the Euler equations hold and k∗tUt(C
∗) → 0 as

t→∞ (the Transversality Condition).

Proof. Suppose C∗ is optimal. As above, the optimal path must satisfy the Euler equa-

tions. Note that k∗t > 0 for all t by regularity. Let y∗t = ft(k
∗
t−1) denote the income stream

associated with the optimal path C∗ and Jt denote the value function at time t with c∗t > 0.

Since Jt(0) = 0, and Jt is concave, Jt(y) ≥ yJ ′t(y) for all y ≥ 0. Setting y = y∗t yields

k∗tW1(c∗t , U(StC∗)) ≤ y∗tW1(c∗t , U(StC∗)) ≤ Jt(y
∗
t ). (1)

Now Jt(yt) = U(St−1C∗). Multiplying through by δt−1 and using the Euler equations

yields

0 ≤ k∗tUt(C
∗) ≤ δt−1U(St−1C∗).

Combining the ϕ-boundedness of U with δ‖ϕ ◦ S‖ϕ < 1 shows k∗tUt(C
∗) → 0 along any

subsequence with ct > 0. The sufficiency of the transversality condition is implied by Lemma

2 since U is continuous. �

Lemma 4. Suppose U is concave and product lower semicontinuous on the feasible set.

Then a path K∗ is optimal if it satisfies the Euler equations and the transversality condition

is satisfied.

Proof. Consider an arbitrary feasible path K with associated C. Define an approximate

utility function UN by UN(C) = U(c1, . . . , cN , c
∗
N+1, c

∗
N+2, . . . ) where C∗ is the consumption

path corresponding to K∗. Since U and f are concave, we have

UN(C)− U(C∗) ≤
N−1∑
t=1

(∂U/∂kt)[kt − k∗t ]− UN(kN − k∗N)

Now ∂U/∂kt = 0 by the Euler equations. Thus UN(C)− U(C∗) ≤ −UN(kN − k∗N) ≤ UNk
∗
N .

Letting N → ∞ and using the transversality condition shows lim supUN(C) ≤ U(C∗). By
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lower semicontinuity of U , U(C) ≤ lim supUN(C) ≤ U(C∗) for all feasible C. Therefore C∗

is optimal. �

If U is not differentiable, a similar result could be obtained by using supergradients instead

of derivatives. In fact, Malinvaud’s (1953) sufficiency proof doesn’t even need recursivity.

4. Monotonicity, Stability and Turnpikes

Beals and Koopmans (1969) have given conditions where a convex technology would yield

monotonic optimal paths in the one-sector model. A necessary and sufficient condition for

monotonicity is not known with more general technologies, although progress has been made

by Benhabib, Majumdar and Nishimura (1987). More is known about the the additively

separable case, where Dechert and Nishimura (1983) carried out an analysis of monotonicity

in a reduced form model.

In this section we assume the feasible set B(k) is α-bounded and convex, that U is strictly

concave, satisfies the Inada conditions, and is β-continuous for some β > α. Optimal paths

are then unique, and the policy correspondences are functions. The Inada conditions imply

that the optimal path is strictly positive for k > 0. Recall that the Euler equations are

1 +R(St−1C) = f ′(kt) where R = R1,2.

Monotonicity Theorem. Suppose ∂R/∂c1 < 0. For any initial stock k, kt(k) is a strictly

increasing function of k and the optimal path is strictly monotonic.

Proof. Let k < k′, and let K and K be optimal from k and k′, respectively. Suppose

k1 = k′1. Consider the path k′′ defined by k′′0 = k0 and k′′t = k′t for t = 1, 2, . . . . This

path is optimal by the Principle of Optimality. Further, c′′1 = f(k) − k′′1 < f(k′) − k′1 = c′1

and c′′2 = f(k′′1) − k′′2 = c′2. Thus c′t = c′′t for t = 2, 3, . . . . The Euler equations yield

1 + R(c′′1, c
′′
2, . . . ) = f ′(k′′1) = f ′(k′1) = 1 + R(c′1, c

′
2, . . . ). Since c′t = c′′t for t = 2, 3, . . . ,

R(c′′1, c
′′
2, . . . ) = R(c′1, c

′′
2, . . . ). But this is impossible since R is decreasing in c1 and c′′1 < c′1.

Thus k1 6= k′1.

Now suppose k1 > k′1. Since k1(0) = 0 < k′1 < k1(k), and k1(k) is continuous, there is a k′′

with 0 < k′′ < k and k1(k′′) = k′1. This is impossible by the preceding argument. Therefore

k1 is strictly increasing. Since kt(k) is the tth iterate of k1, it too is strictly increasing. Now

if k1 < k, k2 = k1(k1) < k1(k) = k1. Iteration shows k > k1 > k2 > . . . . The case k1 > k is

similar. �

The condition on the rate of impatience says that, all other things equal, we become more
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patient (the rate of impatience decreases) when current consumption rises. This seems quite

intuitive, and holds in the addivitely separable case where 1 + R(C) = u′(c1)/δu′(c2) and

u′′ < 0. In fact it holds whenever W12 ≥ 0. This condition on the aggregator is not necessary

for a decreasing rate of impatience, since the EH aggregator has W12 = −u′(c)e−u(c) < 0.

Yet 1 +R(C) = u′(c1)(−1 +U(SC))/[u′(c2)(−1 +U(S2C))] is decreasing in c1 since u′′ < 0.

We thus obtain a turnpike result for these cases. Optimal paths either converge to a steady

state, or to ∞.

The next question of interest is stability of the steady states. Define the steady-state rate

of impatience, ρ by ρ(c) = R(Ccon) where Ccon = (c, c, . . . ). This is the marginal rate of

impatience, evaluated along the constant path Ccon. Of course, ρ > 0.69 For convenience,

define Φ(c) to be the utility of the constant path Ccon. The rate of impatience is then

ρ(c) = 1/W2(c,Φ(c)) − 1. With additively separable preferences (W (c, U) = u(c) + δU)

this reduces to the usual rate of impatience ρ = δ−1 − 1. Epstein’s generalized Uzawa

aggregator W (c, U) = (v(c) +U)e−u(c) has Φ(c) = v(c)/(eu(c)− 1) and ρ(c) = eu(c)− 1. This

exhibits increasing steady-state impatience (ρ′ > 0), as does the KDW aggregator where

ρ(c) = θeθΦ(c)/δ − 1.

Initial stocks can be divided into three disjoint sets. Let J 0 = {k : k = 0 or f ′(k) =

1+ρ(f(k)−k)}, J + = {k : f ′(k) > 1+ρ(f(k)−k)} and J − = {k : f ′(k) < 1+ρ(f(k)−k)}.
For k ∈ J 0, the Euler equations and transversality condition are clearly satisfied by the

stationary path kt = k. Thus every element of J 0 is a steady state. The Euler equations

also show that all steady states are in J 0. Accumulation is definitely possible in J + since

f ′(k) > 1 + ρ(f(k)− k) > 1.

One way to think about 1 + ρ(f(k)− k) is as the long-run (steady-state) supply price of

capital. The marginal product f ′ gives the long-run demand price. Thus long-run demand

lies above supply in J + and below supply in J −. Intuitively, the quantity should rise in the

long-run in J +, and fall in J −. That this intuition is correct is the content of the turnpike

theorem below.

Since both J + and J − are open, they are the countable union of open intervals. The

endpoints of these intervals must be in J 0. Now label the endpoints k̄i such that k̄i < k̄i+1.

If k /∈ (k̄i, k̄i+1), the optimal path cannot cross the steady states at the endpoints, so

kt ∈ (k̄i, k̄i+1). Further, since kt is monotonic, it must converge to some k̄. Taking the

69 Buckholtz and Hartwick (1989) consider a generalized Uzawa aggregator with v(c) = a[eu(c) − 1], which
is not increasing in c. The constant function U(C) = a is the only utility function satisfying the recursion.
Obviously ρ = 0/0 is then undefined. Buckholtz and Hartwick reject this interpretation, and argue for the
use of an overtaking criterion, which has a zero rate of impatience.
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limit in the Euler equations shows f ′(k̄) = 1 + ρ(f(k̄) − k̄). The optimal path converges

to one of the endpoints. Similarly, if k is greater than all of the steady states it either

converges to the largest steady state, or to ∞. The next theorem shows that kt → k̄i+1

when k ∈ (k̄i, k̄i+1) ⊂ J + and kt → k̄i when k ∈ (k̄i, k̄i+1) ⊂ J −. However, we need a

preliminary lemma before proceeding to the turnpike result.

Non-Optimality Lemma. Suppose k ∈ J + (k ∈ J −) and kt ≤ k (kt ≥ k) for t < n with

kt = k for t ≥ n. Then U(C) ≤ Φ(f(k)− k) and K is not optimal.

Proof. First suppose k ∈ J + and let Ψ(k) = Φ(f(k) − k). That U(C) ≤ Ψ(k) is trivial

for n = 1. We proceed by induction. Suppose U(C) ≤ Ψ(k) when n = m ≥ 1 and consider

a path K with kt ≤ k and kt = k for t ≥ m + 1. If km = k, U(C) ≤ Ψ(k) by the induction

hypothesis, so we may suppose km < k.

Consider the path K ′ defined by k′t = k for t 6= m and k′m = k + δ. Obviously f ′(k) > 1,

so this path will be feasible from k for δ > 0 small enough. Taking a Taylor expansion

shows U(C ′) − Ψ(k) = W1(W2)m−1[W2f
′ − 1]δ + o(δ)δ where all derivatives are evaluated

at k. Since 1 + ρ(f(k) − k) = 1/W2(k,Ψ(k)) < f ′(k), δ may be chosen small enough that

U(C ′) > Ψ(k). Note that remaining at k cannot be optimal.

Now take λ, 0 < λ < 1 with λ(k+δ)+(1−λ)km = k. Then K ′′ = λK ′+(1−λ)K satisfies

the hypotheses of the lemma for n = m, so U(C ′′) ≤ Ψ(k) by the induction hypothesis. Now

Ψ(k) ≥ U(C ′′) ≥ λU(C ′) + (1− λ)U(C) > λΨ(k) + (1− λ)U(C). Thus Ψ(k) > U(C). The

inequality holds for all n by induction. Further, since the stationary path kt = k is feasible

and not optimal, K cannot optimal.

The case of k ∈ J − is similar. �

Turnpike Theorem. Suppose ∂R/∂c1 < 0. The optimal path from k is stationary if

k ∈ J 0, increasing if k ∈ J + and decreasing if k ∈ J −.

Proof. Consider the case where k ∈ J +. We know that kt is strictly monotonic. Suppose

kt ↓ k′. Take a sequence of feasible paths Kν such that Kν → K in the product topology

with kνt ≤ k for all t and kνt = k for large t. (This is possible since f ′ > 1 on [kνt , k].) Then

U(Kν) ≤ Φ(f(k)−k) by the Non-Optimality Lemma. Since U is product continuous on the

feasible set, U(K) ≤ Φ(f(k)− k), contradicting the fact that K is optimal.

The case k ∈ J − is similar, except that the optimal path may simply be truncated to

obtain the desired Kν . �

Benhabib, Majumdar and Nishimura (1987) examine long-run dynamics in two-sector
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models. They find monotonic convergence to a steady state under a normality condition

and a condition on factor intensity, and oscillation if either condition is reversed.

5. Long-Run Income Distribution in Dynamic Economies

One big contrast between general recursive utility and additively separable models comes

when we examine dynamic equilibrium models. In the additively separable case, the most

patient agent(s) end up with all of the capital, while relatively impatient agents use all of

their labor income to service their debt. This is obviously absurd since the impatient agents

would not be able to survive, much less pay the interest on their debt.

This occurs since the long run capital supply is perfectly elastic at the (fixed) steady-state

rate of impatience. If the interest rate is above the rate of impatience, agents will lend as

much as they can. If the interest rate is below the rate of impatience, agents will borrow

as much as possible. The long-run equilibrium thus has the interest rate set at the most

patient agent’s rate of impatience, and all others borrow as much as possible.

With recursive utility, the steady-state rate of impatience varies depending on long-run

consumption. All agents can have the same rate of impatience in the steady state. The

consumption levels are non-zero, but vary across agents depending on their respective rates of

impatience. If the steady-state rate of impatience is increasing in steady-state consumption,

the more patient individuals consume more (and have higher wealth) in the steady state.

To see this, consider the case where each individual earns wages w and faces a fixed

interest rate r. Steady-state consumption is w + rk where k is net savings. Consider the

case of two agents, with ρ1(c) < ρ2(c) for all c (agent one is more patient). In steady-state

equilibrium, ρ1(c1) = ρ2(c2) > ρ1(c2). With ρ1 increasing in c, w+ rk1 = c1 > c2 = w+ rk2,

thus k1 > k2. Curiously, if the rate of impatience were decreasing in consumption, the more

patient individual would own less capital.70

For these considerations to be relevant, we also need a stability result. The equilibrium

must converge to the steady state. The stability of recursive dynamic equilibrium has been

investigated in a number of papers. The simplest case is a representative agent economy. In

that case, the equivalence principle holds (Becker and Majumdar, 1989). The equilibrium

problem is equivalent to a planner’s problem with the same preferences as the representative

agent. Since the solution to the planner’s problem is stable, so is the equilibrium.

The heterogeneous agent recursive case was first rigorously examined by Lucas and Stokey

70 Boyd (1986) examines such cases in a Ramsey equilibrium framework.
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(1984), who considered a two-agent, one-good exchange economy. They assumed that both

current consumption and future utility were normal in the sense that W1(c, y)/W2(c, y) is

decreasing in c and increasing in y. They also required an increasing steady-state rate of

impatience.71 Jafarey (1988) has found that decreasing impatience insures instability, and

that more generally, stability depends on the relative rates of impatience at zero and at the

endowment. In the increasing impatience case, this last condition merely insures there is an

interior steady-state equilibrium.

Both set up a dynamic programming problem that generates the equilibrium. The idea is

that any equilibrium is Pareto optimal, and so solves a social planner’s problem for some set

of weights. This is then recast in a dynamic programming framework. This results in some

complication, but can be done. To see the complication, consider the additively separable

case where Ui(Ci) =
∑∞

t=1 δ
t−1
i ui(cit) for i = 1, 2. The planner’s objective is λ1U(C1) +

λ2U(C2). This objective can be rewritten λ1u1(c1) +λ2u2(c2) +λ1δ1U1(SC1) +λ2δ2U2(SC2).

The weights on future utility are different from the weights on current felicity. This problem

can be circumvented by explicitly including future utility in the planner’s objective, as

detailed in Lucas and Stokey. The planner’s problem then contains the needed information

on stability.

Benhabib, Jafarey and Nishimura (1988) study the long-run behavior of production econ-

omies with heterogeneous agents. They again set up the planner’s dynamic programming

problem, but then use a linearization to study stability. As in the single agent case, increasing

marginal impatience combines with a normality condition to yield stability.

A comprehensive analysis of the planner’s problem has been carried out in a series of

papers by Dana and Le Van (1989, 1990, 1991). They find (1990a, b) that a similar pro-

gramming problem can be set up in a general model with many agents and many goods.

They then obtain the Euler equations, and examine the uniqueness and stability of steady

states of the planner’s problem. The other paper (1989) examines equilibria corresponding

to initial endowments. This amounts to picking the correct social welfare function. They

obtain detailed information about this mapping of endowments into weights.

VI. Conclusion

The upshot of all this is that many of the results and techniques we take for granted in the

71 Hayek (1941) was the first to point out the importance of increasing impatience for stability, although his
argument does not meet modern-day standards of rigor.
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additively separable model carry over to recursive utility. Although we concentrated on one-

sector models, many of these methods have applications to multi-sector models. Koopmans’

original results on representation were shown in a multi-sector framework. The weighted

contraction technique also applies to multi-sector models. Just replace absolute values by

Rn norms, and work in subsets of (Rn)∞. Existence of optimal paths and continuity of

policy functions easily follows by the Maximum Theorem. Similarly, the characterization

via Euler equations and transversality condition is easily extended. Of course, the stability

results of Benhabib et. al. and Dana and Le Van are already in a multi-sector framework,

although the statement of necessary conditions for stability may get quite complex.

Throughout the paper, we have focused on the theoretical aspects of recursive utility. In

case the reader is wondering about empirical work on the subject, we close by mentioning

the paper by Zin (1987). He finds empirical support for recursive preferences exhibiting

increasing marginal impatience in United States macroeconomic data.
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Appendix: The Weighted Contraction Theorem

Let f ∈ C(A; B), the space of continuous functions from A to B. Suppose ϕ ∈ C(A; B) with

B ⊂ R and ϕ > 0. A function f is ϕ-bounded if the ϕ-norm of f , ‖f‖ϕ = sup{|f(x)|/ϕ(x)} is

finite. The same isometry trick we used on `∞(β) shows that Cϕ(A; B) = {f ∈ C(A; B) : f

is ϕ-bounded} is a Banach space under the ϕ-norm. Just set (V f)(x) = f(x)/ϕ(x). In

particular, Cϕ(A; B) is a complete metric space. Recall that a transformation T : Cϕ → Cϕ
is a strict contraction if ‖Tx− Ty‖ϕ ≤ θ‖x− y‖ϕ with θ < 1. For such T , we have:

Contraction Mapping Theorem. A strict contraction on a complete metric space has

a unique fixed point.

The proof is well-known, and can be found in various standard references (e.g., Reed and

Simon, 1972; Smart, 1974).

In applications, the main problem is to show that T is a strict contraction. An easy way

to do this is by using monotonicity properties, as is common in dynamic programming. In

the weighted contraction context, this yields the following form of the theorem.

Weighted Contraction Mapping Theorem (Monotone Form). Let T : Cϕ → C
such that

(1) T is non-decreasing (ξ ≤ ψ implies Tξ ≤ Tψ).

(2) T (0) ∈ Cϕ.

(3) T (ξ + Aϕ) ≤ Tξ + Aθϕ for some constant θ < 1 and all A > 0.

Then T has a unique fixed point.

Proof. For all ξ, ψ ∈ Cϕ,|ξ−ψ| ≤ ‖ξ−ψ‖ϕϕ. So, ξ ≤ ψ+‖ξ−ψ‖ϕϕ and ψ ≤ ξ+‖ξ−ψ‖ϕϕ.

Properties (1) and (3) yield Tξ ≤ Tψ + θ‖ξ − ψ‖ϕϕ and Tψ ≤ Tξ + θ‖ξ − ψ‖ϕϕ. Thus

‖Tξ − Tψ‖ϕ ≤ θ‖ξ − ψ‖ϕ.

Setting ψ = 0, we have ‖Tξ − T (0)‖ϕ ≤ θ‖ξ‖ϕ, and so ‖Tξ‖ϕ ≤ θ‖ξ‖ϕ + ‖T (0)‖ϕ < ∞
by property (2). Hence T : Cϕ → Cϕ. As θ < 1, T is a strict contraction on Cϕ. By the

contraction mapping theorem, it has a unique fixed point. �
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