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Abstract. The usual proof of the saddlepoint property in optimal growth

models is based on the reciprocal root property. That proof is incomplete.

It assumes there are no multiple roots. This paper repairs both the contin-

uous and discrete time versions of the proof. Under a symmetry condition,

the reciprocal root property is usually combined with results from the the-

ory of pencils of quadratic forms to establish the saddlepoint property. I

employ a simple spectral mapping argument to characterize the saddlepoint

property.
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1. Introduction

Since Poincaré, mathematicians have known that the eigenvalues associated with Hamilton-

ian dynamical systems come in reciprocal pairs. In many economic problems, this implies

the saddlepoint property. Unfortunately, the most commonly cited sources simply assume

reciprocity alone implies the roots are paired. In essence, they assume there are no multiple

roots. Fortunately, this deficiency can be repaired even though multiple roots are possible.

A more careful examination of the characteristic equation shows that roots and their recip-

rocals actually satisfy the same characteristic polynomial. As a result, the reciprocal is not

only a root, but must have the same multiplicity. When roots are counted according to mul-

tiplicity, they occur in reciprocal pairs. This paired root property holds in any reduced-form

optimal growth model. Further, under a symmetry condition, a simple spectral mapping

argument establishes a criterion for the saddlepoint property

The saddlepoint property comes in two versions, depending on whether time is continuous

or discrete. In continuous time there are an equal number of positive and negative eigenval-

ues. In discrete time, there are as many eigenvalues with modulus greater than one as have

modulus less than one.

The saddlepoint property plays an important role in capital theory. Saddlepoint instability

is characteristic of optimal growth problems (Kurz, 1968). By Becker’s (1981) Equivalence

Principle, saddlepoint instability is also characteristic of perfect foresight equilibria. Further,

it is instrumental in Scheinkman’s (1976) construction of the stable manifold. It continues

to play a key role in characterizing instability, as in Feinstein and Oren (1983).

The saddlepoint property is intimately related to various other stability and regularity

properties of optimal paths. Under a symmetry condition, DasGupta and McKenzie (1984,

1985) show that the saddlepoint property implies local strong dynamic regularity, and is

equivalent to both local asymptotic stability and the dominant diagonal block condition
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used by Araujo and Scheinkman (1977). Combining this with Araujo and Scheinkman’s

arguments shows the saddlepoint property is equivalent to global asymptotic stability.

Most authors refer to McKenzie (1963), Levhari and Liviatan (1972), or a series of papers

by Samuelson (e.g. 1968, 1969, 1970) when they need the saddlepoint property. A close

inspection of these papers reveals the same lacuna in each of these proofs, regardless of

whether time is continuous or discrete. In the discrete-time version, they attempt to prove

the saddlepoint property by showing that whenever λ is an eigenvalue, so is its reciprocal.

Things are not quite so simple. This reciprocal root property is not enough. The roots must

also have the same multiplicity.

A very simple example illustrates what can go wrong. Consider the 4×4 diagonal matrix

with diagonal (2, 2, 2, 1
2
). Both 2 and its reciprocal, 1

2
, are roots of this matrix, but the roots

are not paired. Even though none of the roots has modulus one, the saddlepoint property

fails. The problem is that 2 has multiplicity 3 and 1

2
has multiplicity 1.

The potential for multiple roots arises whenever there are two or more capital goods.

For this reason, Scheinkman (1976) applied state-of-the-art global analysis (the Hirsch-

Pugh Stable Manifold Theorem) to obtain the local stable manifold at a stationary optimal

program. If the roots had been known to be distinct, the local stable manifold could have

been constructed using elementary methods (Scheinkman, 1976, p.19). If there are multiple

roots, these methods are insufficient.

The next problem is to obtain a simple characterization of the saddlepoint property. This

is possible under an appropriate symmetry condition. Magill and Scheinkman (1979) and

DasGupta and McKenzie (1984) use a result concerning simultaneous diagonalization from

the theory of pencils of quadratic forms (Gantmacher, 1960, pp. 310-312). In fact, a simple

spectral mapping argument yields a characterization which implies their results.

The results in this paper also apply to other economic problems with a similar structure.

In particular, linear rational expectations models with quadratic objective functions used by
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Hansen and Sargent (1980, 1981) and Whiteman (1983) fall into the same framework. For

example, Kollintzas (1986) found the saddlepoint property useful for the solution of such

models.

Section Two contains basic facts about polynomials and their roots. Section Three shows

that roots occur in reciprocal pairs with the same multiplicity. Section Four then establishes

the saddlepoint property under a symmetry condition by means of a simple spectral mapping

argument.

2. Polynomials and Reciprocity

I will need the following well-known result on the factorization of polynomials to establish

that roots come in reciprocal pairs. This proposition is an easy consequence of the Fun-

damental Theorem of Algebra and the fact that such a factorization must be unique [see

Hoffman and Kunze (1971, pp. 136-138)]. The importance of this factorization is that it

takes multiplicity into account.

Proposition. Let p(λ) be a polynomial of degree m over the reals. It has a unique factor-

ization of the form

p(λ) = α

j∏

i=1

(λ − λi)
ni

where α is a constant, the λi are the distinct roots of p, the ni are their multiplicities, and

∑j
i=1

ni = m.

The above factorization will be used in the following two lemmas on paired roots. Lemma

1 is used to prove the paired root property in continuous time, and Lemma 2 applies to

discrete time.

Lemma 1. Suppose p(λ) = p(ρ − λ). Then both λi and ρ − λi are roots with the same

multiplicity ni.
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Proof. Use the proposition to factor p(λ) = p(ρ − λ).

p(λ) = p(ρ − λ) = α

j∏

i=1

[(ρ − λ) − λi]
ni

= (−1)mα

j∏

i=1

[λ − (ρ − λi)]
ni.

By the proposition, this factorization is unique. Hence both λi and ρ − λi are roots with

multiplicity ni. �

Lemma 2. Suppose p(λ) is a polynomial of degree m that satisfies p(λ) = γλmp(1/δλ) for

some constant γ with p(0) 6= 0. Both λi and 1/δλi are roots of the same multiplicity ni.

Proof. Again use the proposition to factor p(λ).

p(λ) = γλmp(1/δλ) = aλmα

j∏

i=1

[(δλ)−1 − λi]
ni

= γα

j∏

i=1

[δ−1 − λiλ]ni

= α′

j∏

i=1

[λ − (δλi)
−1]ni.

Once again, unique factorization guarantees that both λi and 1/δλi are roots of multiplicity

ni. �

3. Reciprocity and Paired Roots

I will consider both the discrete and continuous time cases. Following Levhari and Liviatan

(1972), I consider reduced-form utility functions. These have the form
∫

∞

0
e−ρtv(k, k̇)dt in

continuous time and
∑

∞

t=0 δtv(kt, kt+1) in discrete time. Here v, the reduced-form felicity

function, is concave and twice continuously differentiable. The non-negative n-vector of

capital stocks at time t is denoted by k. An initial stock k0 is given. The technology is



RECIPROCAL ROOTS, PAIRED ROOTS AND THE SADDLEPOINT PROPERTY 5

given by a closed convex set T. In the continuous-time case, k(t) is a twice continuously

differentiable function of time t with (k, k̇) ∈ T and k(0) = k0. In the discrete-time case,

(kt, kt+1) ∈ T for all t.

As usual, interior optimal paths must satisfy the Euler equations. In continuous time the

Euler equations are

e−ρt∂v/∂ki = d(e−ρt∂v/∂k̇i)/dt,

and in discrete time they are

δ∂v(kt, kt+1)/∂ki
t + ∂v(kt−1, kt)/∂ki

t = 0

for t = 1, 2, . . . .

We linearize these equations to study motion about the steady state. The linearized

equation is obtained from the Taylor expansion of the Euler equations about the steady

state capital stock k = k∗. In continuous time this procedure yields following system of

equations.

Adz/dt = −(B − B′ − ρA)z + (C + ρB)y

dy/dt = z

where y = k−k∗, and A = (∂2v/∂k̇i∂k̇j), B = (∂2v/∂k̇i∂kj), and C = (∂2v/∂ki∂kj) are the

matrices of partial derivatives, evaluated at the steady state k̇ = 0, k = k∗. This system

describes the approximate behavior of optimal paths in a neighborhood of the steady state.

When A is non-singular, the system is non-degenerate and its properties are described by

the characteristic equation

p(λ) = det[Aλ2 + (B − B′ − ρA)λ − (C + ρB)] = 0.
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The characteristic polynomial p(λ) obeys

p(ρ − λ) = det[A(ρ − λ)2 + (B − B′ − ρA)(ρ − λ) − (C + ρB)]

= det[Aλ2 + (B′ − B − ρA)λ − (C + ρB′)]

= det[Aλ2 + (B − B′ − ρA)λ − (C + ρB)]

since A and C are symmetric. But this last expression is just p(λ), so p(λ) = p(ρ − λ). By

Lemma 1, both λi and ρ − λi are roots of the same multiplicity.

In the discrete-time case, we again apply Taylor’s theorem to the Euler equations to get

the following linearized equations about the steady state k∗.

δB′zt+1 = −(A + δC)zt − Byt

yt+1 = zt

where yt = kt − k∗, and the matrices of partial derivatives, A = (∂2v/∂ki
2∂kj

2), B =

[∂2v/∂ki
2∂kj

1], and C = [∂2v/∂ki
1∂kj

1] are evaluated at k1 = k2 = k∗.

When B is non-singular, this system has the characteristic equation

p(λ) = det[δB′λ2 + (A + δC)λ + B] = 0.

The characteristic polynomial p(λ) then obeys

p(λ) = λ2nδn det[B′ + (A + δC)(δλ)−1 + δB(δλ)−2]

= λ2nδn det[δB(δλ)−2 + (A + δC)(δλ)−1 + B′]

= λ2nδn det[δB′(δλ)−2 + (A + δC)(δλ)−1 + B]

since A and C are again symmetric. Thus p obeys p(λ) = λ2nδnp(1/δλ). Lemma 2 now

shows that both λi and 1/δλi are roots of the same multiplicity.

This establishes the following theorem.
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Paired Root Theorem. Suppose roots are counted according to multiplicity. The char-

acteristic roots of the continuous-time reduced-form optimization problem occur in pairs

{λi, ρ−λi} when ∂2v/∂k̇i∂k̇j is non-singular. When ∂2v/∂ki
2∂kj

1 is non-singular, the charac-

teristic roots of the discrete-time reduced-form optimization problem occur in pairs {λi, 1/δλi}.

4. Reciprocity and the Saddlepoint Property

The paired root property is the major step in establishing the saddlepoint property. Only

one step remains. We must show that the roots have either the proper sign or modulus.

When time is continuous, we say the saddlepoint property holds if the paired roots have

opposite signs. When time is discrete, we say the saddlepoint property holds provided one

member of each pair has modulus less than one, while the other has modulus greater than

one. This can be established when ρ is near 0, or δ is near 1.

When the matrix of cross partial derivatives, B, is symmetric, the analysis can be simpli-

fied. We need only look at an n × n matrix rather than a 2n × 2n matrix.

Saddlepoint Theorem. Suppose B is symmetric. Let Σ = {z : ρ2 Re z ≤ −(Im z)2} and

R = {z : (Re z)2/(1+ δ)2 + (Im z)2/(1− δ)2 ≤ 1}. The saddlepoint property is equivalent to

Σ∩σ(A−1(B + ρC)) = ∅ in continuous time and R∩σ(B−1(A+ δC)) = ∅ in discrete time.

Proof. Let Λ be the set of roots. In the continuous-time case, we must show that λ and

ρ − λ have opposite signs whenever λ is a root. The saddlepoint property will hold if and

only if Λ ∩ A = ∅ where A is the strip {z : 0 ≤Re z ≤ ρ} shown at the left in Figure 1.

We know λ ∈ Λ is equivalent to det[Aλ2 + (B − B′ − ρA)λ − (C + ρB)] = 0. Using the

symmetry of B, a little manipulation reveals that Λ = {λ : det[λ2−ρλ−A−1(C +ρB)] = 0}.

Let f(λ) = λ2 − ρλ. Since f is at most 2 to 1, and f(ρ − λ) = f(λ), we find Λ = {λ :

f(λ) ∈ σ(A−1(B + ρC))} where σ denotes the spectrum. Now f maps A to the parabolic

region B = f(A) = {z : ρ2 Re z ≤ −(Im z)2} as in Figure 1. The saddlepoint property is
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then equivalent to B ∩ σ(A−1(B + ρC)) = ∅.

In the discrete-time case the forbidden region is the ring C = {z : 1 ≤ |z| ≤ 1/δ}

shown at the left in Figure 2. The saddlepoint property is equivalent to Λ ∩ C = ∅.

The set of roots is Λ = {λ : det[δB′λ2 + (A + δC)λ + B] = 0}. With B symmetric,

Λ = {λ : det[B−1(A + δC) − g(λ)] = 0}, where g(λ) = −(δλ2 + 1)/λ. Now g maps

C to the elliptical region D = g(C) = {z : (Re z)2/(1 + δ)2 + (Im z)2/(1 − δ)2 ≤ 1} as

shown in Figure 2. It immediately follows that the saddlepoint property is equivalent to

D ∩ σ(B−1(A + δC)) = ∅. �

The conditions in the Saddlepoint Theorem can sometimes be verified without further

calculation. Suppose A and (C + ρB) are negative definite in the continuous-time case.

(This will usually occur when ρ is near zero since v is concave.) Then −A = |A| has a square

root |A|1/2 and σ(A−1(B + ρC)) = −σ(|A|−1/2(C + ρB)|A|−1/2). As |A|−1/2(C + ρB)|A|−1/2

is negative definite, −σ(|A|−1/2(C + ρB)|A|−1/2) ⊂ R+. The saddlepoint property follows.

In other cases the Saddlepoint Theorem simplifies matters. Consider the discrete-time
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case with (A + δC) negative definite. As −(A + δC) has a square root D, we obtain

σ(B−1(A + δC)) = −σ(DB−1D) as before. Now −σ(DB−1D) ⊂ R since the spectrum of a

symmetric matrix is real. The saddlepoint property is then equivalent to σ(B−1(A + δC))∩

[−(1 + δ), (1 + δ)] = ∅, which is the same condition derived by DasGupta and McKenzie

(1984).
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