Name:		Panther ID:		
Exam 1	Calculus 3	Spring 2020		
Important Rules:				
at the beginning of the texts, or formula she	ne exam and placets should NOT	calculator of any kind, smart-watch, etc.) should be turned off ed in your bag, NOT in your pocket. Electronic items, notes, be used at any time during the examination. Concentrate on neighbor's paper or try to communicate with your neighbor.		
		l lead to a score of zero on this exam, possibly an automatic or academic misconduct.		
	ork might receive	eive full credit you must show your work. Answers which are no credit. Solutions should be concise and clearly written. considered.		
1. (15 pts) Given the ve	ectors $\mathbf{u} = \mathbf{i} - 2\mathbf{k}, \mathbf{v}$	$= 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, find each of the following:		
(a) (5 pts) A vector \mathbf{w} of magnitude 5 in the direction opposite to the direction of \mathbf{u} .				
(b) (5 pts) The angle be	tween ${\bf u}$ and ${\bf v}$ (ans	swer as inverse trig. function ok).		
(c) (5 pts) The vector pr	$\mathrm{roj}_{\mathbf{v}}\mathbf{u}$ (the projection	on of ${\bf u}$ onto ${\bf v}$.)		

- 2. (14 pts) Circle True or False. You do not have to justify your answer for these. Assume that \mathbf{u}, \mathbf{v} are arbitrary vectors in \mathbf{R}^3 unless stated otherwise.
- (a) For any vectors \mathbf{u}, \mathbf{v} in \mathbf{R}^3 , $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = 0$. True False
- (b) The plane perpendicular to the z-axis at (0,0,4) is given by z=4. True False
- (c) If two lines in \mathbb{R}^3 do not intersect, then they are parallel. True False
- (d) If two planes with normal vectors \mathbf{n}_1 and \mathbf{n}_2 do not intersect, then $\mathbf{n}_1 \times \mathbf{n}_2 = \mathbf{0}$. True False
- (e) $x^2 + z^2 = 4$ is a circle in 3-space. **True False**
- (f) If $\mathbf{r}(t)$ is the position vector of a particle at time t, then the speed is given by $|\mathbf{r}'(t)|$. True False
- (g) The graph of $\mathbf{r}(t) = 2\cos t\,\mathbf{i} + 3\sin t\,\mathbf{j} + 5\,\mathbf{k}$ is an ellipse in the plane z = 5. True False
- **3.** (15 pts) (a) (9 pts) Show that the line x = 2, y = 3 + 2t, z = -2 2t intersects the plane x + 2y + 3z = 4 and find the point of intersection.

(b) (6 pts) Is the line $x=2,\ y=3+2t,\ z=-2-2t$ perpendicular to the plane x+2y+3z=4? Briefly justify.

4. (12 pts) Match the	e following equat	tions with the appropriat	e surface:
(i) $x^2 - 2y^2 + 3z^2 = 3$	1		
(ii) $2y^2 + 3z^2 = 1$			
(iii) $(x+1)^2 + 2(y-1)^2 + 2(y-$	$1)^2 + 3(z-2)^2 =$	= 10	
(iv) $x - 2y^2 - 3z^2 = 1$	1		
(v) $(x+1)^2 - 2(y-1)$	$(1)^2 - 3(z-2)^2 =$: 10.	
(vi) $x^2 = 2y^2 + 3z^2$			
(a) ellipsoid	(b) hyperboloid	d with one sheet	(c) hyperboloid with two sheets
(d) elliptic cylind	er	(e) elliptic paraboloid	(f) elliptic cone
and $S(3,5,-1)$. (a) (5 pts) Show that	this shape is a p	parallelogram. Explain yo	our reasoning briefly. $P(1,5,2), R(4,10,1)$ our reasoning briefly. $P(1,5,2), R(4,10,1)$ oposite corners, find its area.

(c) (8 pts) Find an equation for the plane that contains the parallelogram.

6. (16 pts + 6 bonus) Consider the curve

$$\mathbf{r}(t) = \frac{3}{\sqrt{2}}\cos t\,\mathbf{i} + 3\sin t\,\mathbf{j} + \frac{3}{\sqrt{2}}\cos t\,\mathbf{k}\;.$$

(a) (8 pts) Find parametric equations for the tangent line to the curve at the point corresponding to $t = \pi/4$.

(b) (8 pts) Show that $\mathbf{r}(t)$ represents a circle, by showing that the curve lies on the sphere $x^2 + y^2 + z^2 = 9$ and on a certain plane.

(c)* (6 pts bonus - maybe a bit challenging) Can you find the radius of the circle represented by $\mathbf{r}(t)$?

- 7. (12 pts) Choose ONE proof. If you do TWO, only the larger score will be considered for this problem, but the second score may give some bonus towards a previous problem where your score is smaller. You can use the back of the page, if needed.
- (A) Prove the "geometric formula" for the dot product

 $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$, where θ is the angle between \mathbf{u} and \mathbf{v} .

- (B) State and prove the point-normal equation of a plane.
- (C) Consider the usual 3d rectangular coordinate system with origin O and let A be an arbitrary point on the x-axis, B be an arbitrary point on the y-axis and C be an arbitrary point on the z-axis. Use vectors to show that

$$(Area(\triangle ABC))^2 = (Area(\triangle AOB))^2 + (Area(\triangle BOC))^2 + (Area(\triangle COA))^2$$