Name:	Answer	Key	
	•	J	

Panther ID: _

Quiz 02/20/2020

MAC-2313

1. (6 pts) Let $z = xy^2 + ye^{-x^2}$. Find each of the following:

(a)
$$\frac{\partial z}{\partial x} = y^2 + y \cdot e^{-x^2} \left(-2x\right) = y^2 - 2xy e^{-x^2}$$

(b)
$$\frac{\partial^2 z}{\partial x^2} = 0 - \left[2y e^{-x^2} + 2xy e^{-x^2} (-2x) \right] = -2y e^{-x^2} + 4x^2y e^{-x^2} = 0$$

or = $2y e^{-x^2} \left(2x^2 - 1 \right)$

(c)
$$\frac{\partial^8 z}{\partial y^3 \partial x^5} = 0$$
 it is a mixed higher order partial, so we can cheose the order to do the derivatives. It's auch easile to differentiate $y.r.t.y$ first $\frac{\partial^2 z}{\partial y} = 2xy + e^{-x^2}$ $\frac{\partial^2 z}{\partial y^2} = 2x = 2x = 2x^2 = 0$ $\frac{\partial^2 z}{\partial y^3} = 0$ $\frac{\partial^2 z}{\partial y^3} = \frac{\partial^2 z}{\partial y^3} = 0$

$$\frac{\partial x}{\partial y} = 2xy + e^{-x^2}$$
 $\frac{\partial^2 y}{\partial y^2} = 2x$ = $\frac{\partial^2 y}{\partial y^3} = 0$ = $\frac{\partial^2 y}{\partial y^3} = \frac{\partial^2 y}{\partial y^3} = \frac{\partial^2 y}{\partial y^3} = 0$

2. (5 pts) The temperature at a point (x, y) on a metal plate in the xy-plane is given by $T(x,y) = 2x^2 + 3x - 3y^2$ degrees Celsius.

(a) (1 pt) What is the temperature at the point (2,0)?

(b) (1 pt) An ant is moving on the metal plate so that at time t (in seconds) its position is given by $(x(t) = 2\cos t, y(t) = \sin t)$. In one sentence, describe the trajectory of the ant.

(c) (3 pts) What temperature does the ant experience at $t = \pi/2$ seconds and what is the rate of change of temperature with respect to time at that moment?

at
$$t=\frac{\pi}{2}c$$
 the position of the and is $z(\frac{\pi}{2})=0$, $y(\frac{\pi}{2})=1$, so $T(0,1)=-3^{\circ}C$ is the temperature and feels at that moment.
 $dT=\frac{\partial T}{\partial x}\cdot\frac{\partial x}{\partial t}+\frac{\partial T}{\partial y}\cdot\frac{\partial y}{\partial t}=(4z+3)(-2s+4)-6y\cdot\cos t=$

$$=(8\cos t+3)(-2s+4)-6s+4\cdot\cos t$$
so $\frac{dT}{dt}\Big|_{t=\frac{\pi}{2}}=(8\cos\frac{\pi}{2}+3)(-2s+4)-6s+4$