- Vectors are 1 When the product $=0$
- Vectors are parallel wen the $x$ product $=0$
- Given two points $A(5,2,0), B\langle 4,2,2\rangle$ find vector $v$ that is parallel to $A B$ withlength 10 and the jove directions

$$
\begin{aligned}
& \overrightarrow{A B}=\langle-1,0,2\rangle \\
& \stackrel{\rightharpoonup}{U} \text { unit rector parallel| }=\frac{1}{|A B|} \cdot A B \\
& \qquad \vec{U}=10 \cdot \frac{1}{|A B|} \cdot A B=\frac{10}{\sqrt{5}} \cdot\langle-1,0,2\rangle
\end{aligned}
$$

- Find the area of the triangle given by the joints $A(5,2,0), B(4,2,2) \quad C(1,2,3)$

$$
\begin{aligned}
& \stackrel{\Delta}{0} \cdot \overrightarrow{A B}=(-1,0,2) \\
& \overrightarrow{A C}=(-4,0,3) \\
& A B \times A C=\left|\begin{array}{ccc}
i & j & k \\
-1 & 0 & 2 \\
-4 & 0 & 3
\end{array}\right|=\left|\begin{array}{ll}
0 & 2 \\
0 & 3
\end{array}\right| 1 .\left|\begin{array}{cc}
-1 & 2 \\
-4 & 3
\end{array}\right| \hat{\jmath}+\left|\begin{array}{cc}
-1 & 0 \\
-4 & 0
\end{array}\right| \hat{k} \\
& 0 \hat{\imath}-(-3--8) \hat{\jmath}+[0-0) \hat{\jmath} \\
& \underline{-5 \hat{\jmath}}=\sqrt{5^{2}}=\frac{\text { SAbean of } D}{2}
\end{aligned}
$$

13.5 Lines and planes in 3 space

- Line in $R^{2}=y=m x+b$


$$
a x+b y=c \longrightarrow \text { General }
$$

Cartesian equation of all line in $R^{2}$

- Equation of a plane in $R^{3}$


Suppose we want to find the equation of a plane through a given point $P_{0}\left(x_{0}, y_{0}, z_{2}\right)$ and a given normal vector $\vec{n}=\langle a, b, c\rangle=$ $a \hat{i}+b \hat{\jmath}+c \hat{k}$

$$
\begin{aligned}
& \vec{n} \perp P_{0} P=\vec{n} \cdot \overrightarrow{P_{0}} \vec{P}=0 \\
& \overrightarrow{P_{0}} P=\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \\
& a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
\end{aligned}
$$

(artesian equation of a plane thragh $P_{g}\left(x_{0}, y_{0}, z_{0}\right)$ and of normal vector

$$
\vec{n}=\langle a, b, c\rangle
$$

Ex: find the equation of the Plane that contains $A(5,2,0) \quad B(4,2,2) \quad C(1,2,3)$
find $A B \times B C$ which is $\vec{n}$

$$
-\hat{\downarrow} \hat{\jmath}=\left\langle\begin{array}{c}
0,-5,0\rangle \\
a
\end{array}\right.
$$

take $p_{0}$ to be $A=(5,2,0)$

$$
\begin{gathered}
\text { equation }=0 \cdot(x-5)-5(y-2)+0(z-0)=0 \\
-f(y-2)=0 \\
-5(y-2=0 \\
y=2
\end{gathered}
$$

- equation of a line in 3-space
given a point $p_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and has direction given by a vector $v=\langle a, b, c\rangle$
$\overrightarrow{P_{0} P} \| \vec{V} \Leftrightarrow \vec{P}_{0} P$ is a scalar multiple of $V, T$ is a scalar

$$
\begin{aligned}
& \vec{p}_{0} p=t \cdot \vec{v}
\end{aligned}
$$

$$
\overrightarrow{O P}_{p}-\overrightarrow{o p}_{0}=+\cdot \vec{v}
$$

$$
\vec{r}-\vec{r}_{0}=+\cdot \vec{v}
$$

$\vec{r}=t \cdot \vec{v}+r_{0}=$ vector equation of the line

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

$x=x_{0} \notin t_{a}$
$y=y_{0} \oplus t_{b}>$ Parametric $\begin{gathered}\text { (quation) of aline } L\end{gathered}$
$z=z_{0} \oplus+c$ that contains $p_{0}$ one las) directionais
ex: find the parametric equation of a line that goes through $A(2,3,1) \quad B(5,7,-1)$


$$
\begin{aligned}
& A B=\langle 3,4,-2\rangle \text { Direction vector } \\
& P_{0}=A=\left(x_{0} y_{0} z_{0}\right. \\
& 2,3,1)
\end{aligned}
$$

$x=2 \oplus 3 t \quad$
$\left.\begin{array}{l}y=3 \oplus 4 t \\ z=1 \oplus-2 t\end{array}\right\} \begin{aligned} & \text { Parametric equation of } \\ & \text { the line }\end{aligned}$
ex: Let $A(2,-3) \quad B(1,1)$
parametric equation of the line $L$ through $A 3^{\prime}, B$

$$
\vec{V}=A B=\langle-1,4\rangle \quad \text { Aisintitialooint }\left(\begin{array}{ll}
x_{0} & y_{0} \\
2, & -3
\end{array}\right)
$$

$x=x_{0}+a t=2-t>$ parametric equation of a line

$$
y=y_{0}+b t=-3+4 t
$$

eliminate Parameter

$$
\begin{aligned}
& t=2-x \\
& y=-3+4(2-x) \\
& -3+8-4 x=5-4 x \\
& m=4 \\
& (y-1)=-4(x-1)
\end{aligned}
$$

- two planes are parallel if and only if thy are scalar multiples of one another
ex: Ane $x+y+3 z=1$ and $-2 x-3 y-6 z=0$ parallel planes?

$$
n_{1}(1,1,3)
$$

$n_{2}(-2,-3,-6)$ they are not scalar multiples
$\therefore$ they are not parallel planes.
(b.) find the equation of a plane through origin that
is parallel to the plane

$$
(0,0,0)
$$

$$
x+y+3 z=1
$$

$n_{1}\langle 1,1,3\rangle$

$$
x+y+3 z=0
$$

$$
L_{1}\langle 2,-3,1\rangle \quad L_{2}\langle-3,1,-1\rangle
$$

ex: Determine if the lines $L_{1}$

$$
\begin{array}{ll}
x=1+2 t & l_{2} x=5-3 s \\
y=-3 t & y=1+5 \\
z=2+t & z=2-5
\end{array}
$$

are parallel, intersecting, or skew.

$$
\begin{array}{c|c|c}
1+2 t=5-3 s & -3 t=1+s & 2+t=2-s \\
& -3(-s)=1+s & t=-s \\
1+2\left(-\frac{1}{2}\right)=5-3(1 / 2) & 3 s=1+s & t=-(1 / 2) \\
1-1=5-\frac{3}{2} & s=1 & t=-1 / 2 \\
0 \neq \frac{8}{2} \quad \text { in no intersection =. skew. } &
\end{array}
$$

