Review problems for Quiz 0

Evaluate the following antiderivatives

Problem 9.1.
$$\int (x^2 - 3) dx$$

Problem 9.2.
$$\int (x^{-3} - 3\sqrt[4]{x} + 8\sin x) dx$$

Problem 9.5.
$$\int (e^x + x^e) dx$$

Problem 9.6.
$$\int (1 + 2x^2)^2 dx$$

Problem 9.7.
$$\int \frac{x^5 + 2x^3 - 1}{x^4} dx$$

Problem 9.9.
$$\int \sec x (\sec x + \tan x) dx$$

Problem 9.11.
$$\int x^3 \sqrt{x^4 + 1} dx$$

Problem 9.12.
$$\int \cos^3 x \sin x dx$$

Problem 9.13.
$$\int e^{\tan(2x)} \sec^2(2x) dx$$

Problem 9.16.
$$\int \frac{1}{x \ln x} dx$$

Problem 9.17.
$$\int \frac{1}{1+4x^2} dx$$

Problem 9.18.
$$\int \frac{x}{1+4x^2} dx$$

Problem 2.2. Find the derivatives of the following functions: a) $y = \frac{3x-1}{x^2+7}$ b) $y = e^{x^2} \sin(5x)$ c) $y = \sin^{-1}(x) \ln(3x+1)$ d) $y = \cos^3(7x)$ e) $y = \sin(\sqrt{x}) + \sqrt{\sin(x)}$ f) $y = x^2 + 2^2 + 2^x$

Problem 2.3. Find the derivatives of the following functions:

a)
$$y = 4x^3 - 5\cos x - \sec x + \pi^5$$

b) $y = (x^2 - 3)\sin(2x)$.
c) $y = \frac{3x-1}{2x+7}$
d) $y = \sin^3(\tan 5x)$
e) $y = x^5 + 5^x + e^{3x} + \ln(3x) - \ln 7$
f) $y = \sin(3x) + \tan(5x) + \sin^{-1}(3x) + \tan^{-1}(5x)$

Problem 2.7. Find the equation of the tangent line to the given curve at the given point a) $x^2y + \sin y = 2\pi$ at $P(1, 2\pi)$ b) $y = 3x + e^{3x}$ at x = 0c) $2x^3 - x^2y + y^3 - 1 = 0$ at P(2, -3) Problem 2.8. Find the second derivative of the following functions a) $y = \sqrt{2x - 3}$ b) $y = (5x - 3)^5$ c) $y = \tan(4x)$

Problem 7.11. For each function on the indicated interval, find the absolute maximum and absolute minimum, if these exist. If one or both do not exist, specify so.

(a)
$$f(x) = 2x^5 - 5x^4 + 7$$
 on $[-1, 3]$

(b)
$$f(x) = x^{1/3}(x+4)$$
 on $[-1,3]$

(c)
$$f(x) = x + \frac{1}{x}$$
 on $(0, +\infty)$

(d)
$$f(x) = x^2 e^{2x}$$
 on $(-\infty, 0]$

(solutions for these problems are available on Answers.pdf)

Extra problems:

a) Solve the following system of equations

b) Write the points P=(1,1) and Q= (2, 4) in polar coordinates (r cos t, r sin t).