Review problems for Quiz 0

Evaluate the following antiderivatives
Problem 9.1. $\int\left(x^{2}-3\right) d x$
Problem 9.2. $\int\left(x^{-3}-3 \sqrt[4]{x}+8 \sin x\right) d x$
Problem 9.5. $\int\left(e^{x}+x^{e}\right) d x$
Problem 9.6. $\int\left(1+2 x^{2}\right)^{2} d x$
Problem 9.7. $\int \frac{x^{5}+2 x^{3}-1}{x^{4}} d x$
Problem 9.9. $\quad \sec x(\sec x+\tan x) d x$
Problem 9.11. $\int x^{3} \sqrt{x^{4}+1} d x$
Problem 9.12. $\int \cos ^{3} x \sin x d x$
Problem 9.13. $\int e^{\tan (2 x)} \sec ^{2}(2 x) d x$

Problem 9.16. $\int \frac{1}{x \ln x} d x$
Problem 9.17. $\int \frac{1}{1+4 x^{2}} d x$
Problem 9.18. $\int \frac{x}{1+4 x^{2}} d x$
Problem 2.2. Find the derivatives of the following functions:
a) $y=\frac{3 x-1}{x^{2}+7}$
b) $y=e^{x^{2}} \sin (5 x)$
c) $y=\sin ^{-1}(x) \ln (3 x+1)$
d) $y=\cos ^{3}(7 x)$
e) $y=\sin (\sqrt{x})+\sqrt{\sin (x)}$
f) $y=x^{2}+2^{2}+2^{x}$

Problem 2.3. Find the derivatives of the following functions:
a) $y=4 x^{3}-5 \cos x-\sec x+\pi^{5}$
b) $y=\left(x^{2}-3\right) \sin (2 x)$.
c) $y=\frac{3 x-1}{2 x+7}$
d) $y=\sin ^{3}(\tan 5 x)$
e) $y=x^{5}+5^{x}+e^{3 x}+\ln (3 x)-\ln 7$
f) $y=\sin (3 x)+\tan (5 x)+\sin ^{-1}(3 x)+\tan ^{-1}(5 x)$

Problem 2.7. Find the equation of the tangent line to the given curve at the given point
a) $x^{2} y+\sin y=2 \pi$ at $P(1,2 \pi)$
b) $y=3 x+e^{3 x}$ at $x=0$
c) $2 x^{3}-x^{2} y+y^{3}-1=0$ at $P(2,-3)$

Problem 2.8. Find the second derivative of the following functions

a) $y=\sqrt{2 x-3}$
b) $y=(5 x-3)^{5}$
c) $y=\tan (4 x)$

Problem 7.11. For each function on the indicated interval, find the absolute maximum and absolute minimum, if these exist. If one or both do not exist, specify so.
(a) $f(x)=2 x^{5}-5 x^{4}+7$ on $[-1,3]$
(b) $f(x)=x^{1 / 3}(x+4)$ on $[-1,3]$
(c) $f(x)=x+\frac{1}{x}$ on $(0,+\infty)$
(d) $f(x)=x^{2} e^{2 x}$ on $(-\infty, 0]$
(solutions for these problems are available on Answers.pdf)

Extra problems:

a) Solve the following system of equations

$$
\{4 x-3 y=2 ; \quad 2 y-x=10
$$

b) Write the points $\mathrm{P}=(1,1)$ and $\mathrm{Q}=(2,4)$ in polar coordinates $(r \cos t, r \sin t)$.

