| NAME: | Solution | Key |  |
|-------|----------|-----|--|
|       |          | 7   |  |

Panther ID:

Exam 3 - MAC 2313

Spring 2022

## Important Rules:

A. Any electronic device (cell phone, calculator of any kind, smart-watch, etc.) should be turned off at the beginning of the exam and placed in your bag, NOT in your pocket. Electronic items, notes, texts, or formula sheets should NOT be used at any time during the examination. Concentrate on your own exam. Do not look at your neighbor's paper or try to communicate with your neighbor.

Cheating attempts will lead to a score of zero on this exam, and possibly a report for academic misconduct.

B. Unless otherwise mentioned, to receive full credit you must show your work. Answers which are not supported by work might receive no credit. Solutions should be concise and clearly written. Incomprehensible work might not be considered.

1. (16 pts) Set up iterated double or triple integrals to represent each of the following. Don't spend time trying to evaluate the integrals. It is not required. (A sketch is required in each case.)

(a) (8 pts) The volume of the solid bounded in the first octant by the plane 4x + 2y + z = 4 and the coordinate



0=4/r=2 7=8-r2 1 dt rdrdt 40 L=0 f=L

| 2. (10 pts) Circle if each of the following statements is True or False. No justification is necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) For any continuous function $f(x,y)$ , $\int_1^3 \int_0^4 f(x,y)  dx  dy = \int_0^4 \int_1^3 f(x,y)  dy  dx$ True False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (b) The area of a region $R$ in the plane is given by $A = \int_R \int 1 \ dA$ . True False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (c) For any function $\phi(x, y, z)$ with continuous second order partial derivatives, $\mathbf{Curl}(\nabla \phi) = 0$ . False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (d) Let $R$ be region in the $xy$ -plane bounded by $y=4-x^2$ and the $x$ -axis. The centroid of $R$ is on the $x$ -axis. True False Centroid is on the $y$ -axis (with the squaetry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (e) For the change of variables, $(x = u - 2v, y = u + 2v)$ , the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$ equals 1. True                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\frac{\partial(k,y)}{\partial(a_1u)} = \begin{vmatrix} 1 & -2 \\ 1 & 2 \end{vmatrix} = 2 - (-2) = 4 \neq 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3. (10 pts) Use spherical coordinates to write an iterated integral that gives the mass of a spherical solid of radius a, if the density at each point is proportional to the distance from the center. Assume the constant of proportionality to be k. You DO NOT have to evaluate the integral.  Assume the sphere to have center of 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| beasity at each point S= k. P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| where P= (x'+y'++2') = dist from the portet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $M = \iiint S dV = \iiint \int_{\theta=0}^{\theta=1} \int_{\rho=0}^{\rho=1} \int_{\rho=1}^{\rho=1} \int_{\rho=1}^{\rho=1}$ |
| or Shersin q de de de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

**4.** (14 pts) Use polar coordinates to evaluate  $\int_R \int (x^2 + y^2) dA$  where R is the first quadrant portion of the disk  $x^2 + y^2 \le 4$ . Full computation is required for full credit.

$$\frac{\chi^{2}+\chi^{2}=4 \text{ or } r=2}{2}$$

$$= \int_{0.0}^{0.0} r^{2} dr d\theta = \frac{1}{2} \left( \frac{r^{4}}{4} \Big|_{r=0}^{r=2} \right) = \frac{16}{2} \cdot \frac{16}{4} = 2\overline{4}$$

5. (14 pts) Evaluate the integral by reversing the order of integration  $\int_0^2 \int_0^2 \cos(x^2) dx dy$ . Full computation is required for full credit. Be sure to also sketch the region of integration

R=1(4,4) | y < 2 < 2 , 0 < y < 2 }



$$\int_{x=0}^{x=2} \int_{y=0}^{y=2} \cos(x^2) \, dy \, dx =$$

$$= \int_{x=0}^{x=2} y \cos(x^2) \Big|_{y=0}^{y=x} dx = \int_{0}^{x} x \cos(x^2) dx =$$

$$\int_{1}^{1} \frac{1}{2} \sin(x^{2}) \left( \frac{x=2}{x=0} \right) = \frac{\sin(4)}{2}$$
guess d'adjust
or sub  $u=x^{2}$ 

find a potential function. Conservative v. field test 3 = 34? Ju our care  $\frac{\partial g}{\partial x} = \cos x - \sin y = \frac{\partial f}{\partial y}$ , so the vector field  $\vec{F}$  is We look next for the potential function Q(x,y) so that = V D Ue must have )  $\frac{\partial \overline{\Phi}}{\partial x} = \cos y + y \cos x$  $\left(\frac{\partial \overline{\Phi}}{\partial x} = \sin x - x \sin y\right)$ Integrating first relation with respect to x, we get Φ(x,y)- (cosy+ycosz)dx = x cosy+ysinx+ c(y) Differentiating this w.r.t.y, we check the second condition 30 = - xsiny + sinx + c'(y) = sinx - xiny, so c'(y)=0 so cry) = k a constant Thus the potential function for this field is €(x,y) = x cosy + ysinx + le

**6.** (16 pts) (a) (12 pts) Show that the vector field  $\mathbf{F}(x,y) = (\cos y + y \cos x)\mathbf{i} + (\sin x - x \sin y)\mathbf{j}$  is conservative and

2(4,4)

A(44)

(b) (4 pts) Using part (a), or by direct computation, find the work done by  $\mathbf{F}(x,y)$  on a particle that moves along the line segment from (0,0) to  $(\frac{\pi}{4},\frac{\pi}{4})$ .

Using the Fudam. Theorem for live subgrals (of consenative u-fields  $W = \Phi(P_{\text{final}}) - \Phi(P_{\text{initial}})$  and this work is independent of the path

Ju our care,

$$W = \Phi(\frac{1}{4}, \frac{\pi}{4}) - \Phi(0, 0) = \frac{\pi}{4} \cos \frac{\pi}{4} + \frac{\pi}{4} \sin \frac{\pi}{4} + k - k$$

$$W = \frac{\pi}{4} \cdot \frac{\Omega}{2} + \frac{\pi}{4} \cdot \frac{\Omega}{2} = \frac{\pi}{4}$$

$$\int_C 3xy\,dx + 2x^2\,dy\;,$$



where C is the counter-clock-wise oriented triangle joining the points (0,0), (1,0), (0,1), in any ONE of the following TWO ways:

- (a) Using Green's Theorem.
- (b) Using the definition of the line integral; that is, let  $C = C_1 \cup C_2 \cup C_3$ , parametrize each segment, etc. Doing the problem correctly BOTH ways will give you 6 bonus points.

$$\oint_C f dx + g dy = \iint_{R} \left( \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA$$

where R is a simply connected region with boundary the closed curve C oriented counter-clock wise

In our case,

$$= \int_{x=0}^{x=1} \frac{1}{x} dx dx = \int_{x=0}^{x=1} \frac{1}{x} \left( \frac{1-x}{x} \right) dx = \int_{x=0}^{x=1} \frac{1-x}{x} dx = \int_{$$

(b) without Green & 3xydx + 2xdy = (--) + (--) + (--)

Parametrike each curve: (: x=t=) dx=dt ) => ((--)= \( 0.dt + Lt'.0 = 0 \)

Cz: x=t, y=1-t but t goes from 1 to 0.

 $\int_{C} dx = dt dy = -dt$   $\int_{C} (-1) dx + 2t^{2}(-dt) = --- = \frac{1}{6}$ 

C3: x=0, y=+ with + going again from 1 to 0

dx=0 dy=dt

(c3 (--) = 5,0 + 2,0d1 = 0

[ 3xydx+2xdy=0+6+0=6 Thus adding these

- 8. (14 pts) Choose ONE of the following. If you do BOTH, only the top score will count, but the second score may give some bonus toward a previous problem with a lower score.
- (a) State and prove the fundamental theorem of line integrals (also known as the fundamental theorem of conservative vector fields).
- (b) Compute the divergence of a 3D inverse-square field

$$\mathbf{F} = c \frac{\mathbf{r}}{|\mathbf{r}|^3} = c \left( \frac{x}{\rho^3} \mathbf{i} + \frac{y}{\rho^3} \mathbf{j} + \frac{z}{\rho^3} \mathbf{k} \right) ,$$

where  $|\mathbf{r}| = \rho = (x^2 + y^2 + z^2)^{1/2}$  and c is a constant.

where 
$$|r| = \rho = (x^2 + y^2 + z^2)^{-1}$$
 and e is a constant.

(a) See class wites for (a) or text book.

(b) div  $\vec{F} = \frac{3}{3}\vec{k} + \frac{3}{3}\vec{k} + \frac{3}{3}\vec{k}$ , where  $\vec{F} = f\vec{i} + g\vec{j} + k\vec{k}$ 

To compute, start with  $P = (x^2 + y^2 + z^2)^{\frac{1}{2}}$  and note that

$$\frac{3P}{3x} = P_x = \frac{1}{x}(x^2 + y^2 + z^2)^{-\frac{1}{2}} xx = \frac{x}{(x^2 + y^2 + z^2)^{\frac{1}{2}}} = \frac{x}{P}$$

Similarly (uning symmetry)  $P_y = \frac{y}{P}$ ,  $P_y = \frac{y}{P}$ 

$$\frac{3}{3}\sqrt{\frac{x}{P^3}} = \frac{1\cdot P^3 - x \cdot 3P^3 \cdot P_x}{P^6} = \frac{P^3 - 3x \cdot P^3 \cdot x}{P^6} = \frac{P(P^3 - 3x^2)}{P^6} = \frac{(z^2 + y^2 + z^2 - 3z^2)}{P^6}$$

Thus  $\frac{3}{3}\sqrt{\frac{x}{P^3}} = -\frac{2x^2 + y^2 + z^2}{P^6} = \frac{P^3 - 3x^2}{P^6} = \frac{P^3 - 3x^2}{P^6}$ 

Thus  $\frac{3}{3}\sqrt{\frac{x}{P^3}} = -\frac{2x^2 + y^2 + z^2}{P^6} = \frac{P^3 - 3x^2}{P^6} = \frac{2P^3 - 3x^2}{P^6}$ 

Thus  $\frac{3}{3}\sqrt{\frac{x}{P^3}} = -\frac{2x^2 + y^2 + z^2}{P^6} = \frac{2P^3 - 3x^2}{P^6} = \frac{2P^3 - 3x^2}{P^6$ 

 $div(\vec{r}) = \frac{e^2 - 3v^2}{\rho^5} + \frac{e^2 - 3v^2}{\rho^5} + \frac{e^2 - 3v^2}{\rho^5} = \frac{3e^2 - 3(v^2 + v^2 + v^2)}{\rho^5} = \frac{3e^2 - 3(v^2 + v^2 + v^2)}{\rho^5}$ 

Thus div(=) = 0

So a 30 -inverse square field is divergence free so incompressible Note however that  $\hat{+} = c \frac{\hat{r}}{|\hat{r}|^3}$  is NOT defined at (0,0,0) a fluxed) so one should be careful about regions that contain the origin .