Worksheet 02/24-MAC 2313 Group nr.

\qquad NAMES: \qquad

1. Consider the function $f(x, y)=\ln (1+2 x+3 y)$.
(a) Find the linearization $L(x, y)$ (or the local linear approximation) of $f(x, y)$ at $(0,0)$.
(b) What is the equation of the tangent plane to the graph of $f(x, y)$ at $(0,0)$?
(c) Use differentials, or the linearization you found in part (a), to estimate without calculator $f(1.02,0.99)$.
2. According to the ideal gas law, the pressure, temperature, and volume of a confined gas are related by $P=k \frac{T}{V}$, where k is a constant. Use differentials to approximate the percentage change in pressure if the temperature of a gas is increased 3% and the volume is increased 5%.
3. Use chain rule to find the derivative $d f /\left.d t\right|_{t=0}$, for the function $f(x, y, z)=x y^{2} z^{3}$ along the path $<x(t)=e^{t} \cos t, y(t)=e^{t} \sin t, z(t)=t>$ at $t=0$.
4. The temperature at a point (x, y) on a metal plate in the $x y$-plane is given by $T(x, y)=x^{2}-\frac{3}{2} y^{2}+20$ degrees Celsius. Assume x, y are measured in centimeters.
(a) Suppose a bug is positioned initially at the point $(1,1)$ on the plate. What is the temperature at $(1,1)$?
(b) In which direction should the bug go (from $(1,1))$ to experience the most rapid decrease in temperature? Give your answer as a unit vector, but also as an (approximate) geographical direction. (Assume that the positive x-axis points East and that the positive y-axis points North.)
(c) Suppose next that on the same metal plate there is a heat-seeking ant, which always move in the direction corresponding to greatest increase in temperature. If the ant is initially at the origin, find the trajectory of this ant.
