Worksheet 03/24/2022 MAC 2313

Group nr. ____ Names: _

1. Circle if each of the following statements is true or false and then give a brief justification of your answer.

(a) The area of a region R in the xy-plane is given by $\int_R \int xy \, dA$ True False

Justification:

(b) For any continuous functions f(x), g(x) on [a, b], $\int_{a}^{b} f(x) \cdot g(x) dx = \left(\int_{a}^{b} f(x) dx\right) \cdot \left(\int_{a}^{b} g(x) dx\right)$ True
False
Justification:

(c) If f(x) is continuous on [a, b], g(y) continuous on [c, d] and R is the rectangle $R = [a, b] \times [c, d]$, then

$$\int_{R} \int f(x) \cdot g(y) \, dA = \left(\int_{a}^{b} f(x) \, dx \right) \cdot \left(\int_{c}^{d} g(y) \, dy \right) \qquad \text{True} \qquad \text{False}$$
Justification:

(d) For a continuous function
$$f(x, y)$$
, $\int_0^1 \int_{x^2}^x f(x, y) \, dy \, dx = \int_{x^2}^x \int_0^1 f(x, y) \, dx \, dy$ True False Justification:

2. Set up an iterated double integral to represent each of the following:

(a) The area of the region R, where R is the triangle bounded by y = 3, y = -x + 1 and y = x + 1.

(b) The mass of a the thin plate covering the region R from part (a) and having density $\delta(x, y) = |xy|$.

3. (a) Evaluate the integral $\int_R \int \sin(y^3) dA$, where R is the region bounded by $y = \sqrt{x}$, y = 2, and x = 0. *Hint:* Choose the order of integration carefully.

(b) Evaluate the integral by first reversing the order of integration: $\int_0^1 \int_{4x}^4 e^{-y^2} dy dx$

4. Use polar coordinates to find the volume of the solid bounded inside the cylinder $x^2 + y^2 = 9$ cut by the planes z = 0 and z = 3 - x.

5. Evaluate $\int_R \int \frac{1}{1+x^2+y^2} dA$,

where R is the sector in the first quadrant bounded by y = 0, y = x, and $x^2 + y^2 = 4$.

6. (a) Use polar coordinates to find $\int_{\mathcal{R}} \int e^{-x^2 - y^2} dA$ where \mathcal{R} is the whole first quadrant of the *xy*-plane.

(b) Use part (a) to find the exact value of the improper integral $\int_0^{+\infty} e^{-x^2} dx$. This is an important integral in probability and statistics.