\qquad Names: \qquad

1. Circle if each of the following statements is true or false and then give a brief justification of your answer.
(a) The area of a region R in the $x y$-plane is given by $\int_{R} \int x y d A \quad$ True False

Justification:

(b) For any continuous functions $f(x), g(x)$ on $[a, b]$,
$\int_{a}^{b} f(x) \cdot g(x) d x=\left(\int_{a}^{b} f(x) d x\right) \cdot\left(\int_{a}^{b} g(x) d x\right) \quad$ True \quad False

Justification:

(c) If $f(x)$ is continuous on $[a, b], g(y)$ continuous on $[c, d]$ and R is the rectangle $R=[a, b] \times[c, d]$, then $\int_{R} \int f(x) \cdot g(y) d A=\left(\int_{a}^{b} f(x) d x\right) \cdot\left(\int_{c}^{d} g(y) d y\right) \quad$ True \quad False

Justification:

(d) For a continuous function $f(x, y), \quad \int_{0}^{1} \int_{x^{2}}^{x} f(x, y) d y d x=\int_{x^{2}}^{x} \int_{0}^{1} f(x, y) d x d y \quad$ True False

Justification:

2. Set up an iterated double integral to represent each of the following:
(a) The area of the region R, where R is the triangle bounded by $y=3, y=-x+1$ and $y=x+1$.
(b) The mass of a the thin plate covering the region R from part (a) and having density $\delta(x, y)=|x y|$.
3. (a) Evaluate the integral $\int_{R} \int \sin \left(y^{3}\right) d A$, where R is the region bounded by $y=\sqrt{x}, y=2$, and $x=0$. Hint: Choose the order of integration carefully.
(b) Evaluate the integral by first reversing the order of integration: $\int_{0}^{1} \int_{4 x}^{4} e^{-y^{2}} d y d x$
4. Use polar coordinates to find the volume of the solid bounded inside the cylinder $x^{2}+y^{2}=9$ cut by the planes $z=0$ and $z=3-x$.
5. Evaluate $\int_{R} \int \frac{1}{1+x^{2}+y^{2}} d A$,
where R is the sector in the first quadrant bounded by $y=0, y=x$, and $x^{2}+y^{2}=4$.
6. (a) Use polar coordinates to find $\int_{\mathcal{R}} \int e^{-x^{2}-y^{2}} d A$ where \mathcal{R} is the whole first quadrant of the $x y$-plane.
(b) Use part (a) to find the exact value of the improper integral $\int_{0}^{+\infty} e^{-x^{2}} d x$. This is an important integral in probability and statistics.
