1. Evaluate the line integral $\int_{C}(x+2 y) d x+(x-y) d y$ along the curve $C: x=\cos t, y=2 \sin t, 0 \leq t \leq \pi / 4$.
2. (a) Find the work done by the force field $F(x, y)=\left(x^{2}+x y\right) \mathbf{i}+\left(y-x^{2} y\right) \mathbf{j}$ on a particle that moves along the curve $C: x=t, y=1 / t, 1 \leq t \leq 3$.
(b) Is the vector field in part (a) conservative? Justify your answer.
3. (a) Verify that the vector field $F(x, y)=2 x y^{3} \mathbf{i}+\left(1+3 x^{2} y^{2}\right) \mathbf{j}$ is conservative in the whole plane and find a potential function ϕ.
(b) Use the potential you found in part (a) to find the work of the field \mathbf{F} along any smooth path from the point $(1,-1)$ to the point $(1,1)$.
4. Compute the divergence and the curl of a inverse square-field in 2D and in 3D.
