Worksheet 3-24 - Graph Theory

1. (a) Show that if G is a connected simple planar graph with $\operatorname{girth}(G)=k, k \geq 3$, then

$$
q \leq \frac{k}{k-2}(p-2)
$$

where, as usual, $p=|V(G)|, q=|E(G)|$.
(b) Use part (a) to show that $K_{3,3}$ is not planar.
(c) Use part (a) to show that the Petersen graph is not planar.
2. A graph G is said to be n-partite graph if it is possible to partition the vertex set of G into n nonempty subsets such that any edge of G joins two vertices in different partite sets. (In the case $n=2$, we have the usual notion of a bipartite graph.) Complete n-partite graphs have all possible edges between the partite sets. We denote by $K_{p_{1}, p_{2}, \ldots, p_{n}}$ the complete n-partite graph with partite sets of order $p_{1}, p_{2}, \ldots, p_{n}$.
(a) Show that $K_{2,2,2}$ is planar by providing a planar embedding (please use colors for vertices in the partition).
(b) Show that $K_{2,2,3}$ is NOT planar.
3. Show that the Petersen graph contains a subgraph which is a subdivision of $K_{3,3}$. Thus, via Kuratowski's Theorem (the easy part), this gives another proof that the Petersen graph is not planar.

