To receive credit you MUST SHOW ALL YOUR WORK.

1. (8 pts) For both parts of the problem, let $A = \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix}$ and do the change of variables $y_1 = 3x_1 - 2x_2, \ y_2 = x_1 + x_2.$

(a) Solve
$$\frac{d\mathbf{x}}{dt} = A\mathbf{x}$$
, where $\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$.

That is, express $x_1(t)$ and $x_2(t)$ in terms of the initial conditions $x_1(0), x_2(0)$.

(b) Solve
$$\frac{d^2\mathbf{x}}{dt^2} = -A\mathbf{x}$$

That is, express $x_1(t)$ and $x_2(t)$ in terms of the initial conditions $x_1(0), x_2(0), x_1'(0), x_2'(0)$.

2. (8 pts) Let A be an arbitrary set. Denote by $(\mathbb{R}^A)_0$ the set of all functions $f : A \to \mathbb{R}$ with finite support, that is, $f \in (\mathbb{R}^A)_0$ if and only if $f(a) \neq 0$ for only finitely many elements $a \in A$.

(a) (4 pts) Show that $(\mathbb{R}^A)_0$ is a real vector space which has as basis a set which is bijective to A. (For this reason, $(\mathbb{R}^A)_0$ is called the vector space generated by A. You thus prove that there are vector spaces with basis of arbitrary cardinality.)

(b) (4 pts) If $A = \mathbb{N}$, the set of natural numbers, prove that the set of real sequences with finite support $(\mathbb{R}^{\mathbb{N}})_0$ is isomorphic with the space of polynomials with real coefficients $\mathbb{R}[t]$.

(The "0" subscript is very important and was forgotten in the lecture. $\mathbb{R}[t]$ and $(\mathbb{R}^{\mathbb{N}})_0$ are **not** isomorphic with the set all sequences $\mathbb{R}^{\mathbb{N}}$. You'll receive 2 bonus points if you correctly justify this.)

3. (4 pts) Pb. 12, page 21, textbook. Which of the following sets of vectors are linearly independent? Which span? Which are bases?

In
$$\mathbb{R}^3$$
, the columns of $\begin{pmatrix} 1 & 2 & 2 & 3 \\ 2 & 1 & 2 & 5 \\ 3 & 3 & 4 & 8 \end{pmatrix}$

1