1. (16 pts) A linear operator $p: V \rightarrow V$ is called a projector of the vector space V if $p^{2}=p$. We denote $p^{2}=p \circ p$. Show that if p is a projector of V, then:
(a) $V=\operatorname{Im} p \oplus \operatorname{Ker} p$;
(b) the operator $q=I d_{V}-p$ is also a projector of $V\left(I d_{V}\right.$ denotes the identity of $\left.V\right)$, and $\operatorname{Ker} q=\operatorname{Im} p, \operatorname{Ker} p=\operatorname{Im} q$;
(c) the operator $s=2 p-I d_{V}$ is an involutive automorphism of V; that is, you should show that $s^{2}=I d_{V}$ and that s is an isomorphism from V to V.
(d) Let $V=M_{n, n}(\mathbf{R})$ be the vector space of real $n \times n$ matrices and let $p: V \rightarrow V$ be the operator $p(A)=\frac{1}{2}\left(A-A^{T}\right)$, where A^{T} denotes the transpose of the matrix A. Show that p is a projector and describe in words the subspaces Ker p and $\operatorname{Im} p$. Describe bases for them and find their dimensions.
2. (4 pts) Pb. 7, p. 56 textbook. Consider the operator $L: \mathbb{R}_{3}[t] \rightarrow \mathbb{R}^{2}, L(p(t))=(p(0), p(1))^{T}$. Show that L is onto. What is the dimension of $\operatorname{Ker} L$.
