1. (16 pts) A linear operator $p: V \to V$ is called a *projector* of the vector space V if $p^2 = p$. We denote $p^2 = p \circ p$. Show that if p is a projector of V, then:

- (a) $V = \operatorname{Im} p \oplus \operatorname{Ker} p$;
- (b) the operator $q = Id_V p$ is also a projector of V (Id_V denotes the identity of V), and Kerq = Imp, Kerp = Imq;

(c) the operator $s = 2p - Id_V$ is an involutive automorphism of V; that is, you should show that $s^2 = Id_V$ and that s is an isomorphism from V to V.

(d) Let $V = M_{n,n}(\mathbf{R})$ be the vector space of real $n \times n$ matrices and let $p: V \to V$ be the operator $p(A) = \frac{1}{2}(A - A^T)$, where A^T denotes the transpose of the matrix A. Show that p is a projector and describe in words the subspaces Kerp and Imp. Describe bases for them and find their dimensions.

2. (4 pts) Pb. 7, p. 56 textbook. Consider the operator $L : \mathbb{R}_3[t] \to \mathbb{R}^2$, $L(p(t)) = (p(0), p(1))^T$. Show that L is onto. What is the dimension of KerL.

1