Midterm Exam - MAS 5145 Fall 2011 NAME:
To receive credit you MUST SHOW ALL YOUR WORK.

1. (16 pts -4 pts each part):
(a) Suppose $L: V \rightarrow W$ is a linear map between vector spaces. Define Range (L) and $\operatorname{rank}(L)$.
(b) If V is a vector space over a field \mathbb{K}, define the dual space V^{*}.
(c) State the Fundamental Isomorphism Theorem.
(d) Suppose that U and W are subspaces of a vector space V. What does it mean that $V=U \oplus W$?
2. (14 pts) Consider a vector space V and a collection of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ in V. Show that $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a subspace of V.
3. (16 pts) (a) (4 pts) If A is an $n \times n$ matrix, define the trace of $A, \operatorname{Tr}(A)$, and state the relationship between $\operatorname{Tr}(A)$ and the eigenvalues of A (no proof required).
(b) (6 pts) Prove that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ for any two $n \times n$ matrices A, B.
(c) (6 pts) Show that if A, B are conjugate (similar) matrices, then $\operatorname{Tr}(A)=\operatorname{Tr}(B)$.
4. (14 pts) Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Is the matrix A diagonalizable? Justify. Compute e^{A}.
5. (20 pts) Diagonalize the operator $L: \mathbb{R}_{2}[t] \rightarrow \mathbb{R}_{2}[t]$ defined by $L(\mathbf{p})(t)=\mathbf{p}(a-t)$, where a is a given constant.

Bonus 6 pts: Is there a basis in $\mathbb{R}[t]$ that diagonalizes the operator $L: \mathbb{R}[t] \rightarrow \mathbb{R}[t], L(\mathbf{p})(t)=\mathbf{p}(a-t)$?
6. $(20+10 \mathrm{pts})$ Let L_{1}, L_{2} be linear operators on a finite dimensional vector space V.

Assume that $L_{1} \circ L_{2}=L_{2} \circ L_{1}$. Prove each of the following:
(a) $(6 \mathrm{pts}) \operatorname{Ker}\left(L_{1}\right)+\operatorname{Ker}\left(L_{2}\right) \subseteq \operatorname{Ker}\left(L_{1} \circ L_{2}\right)$.
(b) $(7 \mathrm{pts})$ If L_{1} and L_{2} are diagonalizable, then $\operatorname{Ker}\left(L_{1}\right)+\operatorname{Ker}\left(L_{2}\right)=\operatorname{Ker}\left(L_{1} \circ L_{2}\right)$.
(c) $(7 \mathrm{pts})$ If L_{1} and L_{2} are not diagonalizable, then it is possible that $\operatorname{Ker}\left(L_{1}\right)+\operatorname{Ker}\left(L_{2}\right) \neq \operatorname{Ker}\left(L_{1} \circ L_{2}\right)$. Hint: What is A^{2} for the matrix A in Pb . 4?
(d)* (10 pts) (This part is for take home, as it is more difficult. However, if you can do it in class, you will receive even more bonus points.) Investigate whether $\operatorname{Ker}\left(L_{1}\right)+\operatorname{Ker}\left(L_{2}\right)=\operatorname{Ker}\left(L_{1} \circ L_{2}\right)$ assuming that only one of the operators is diagonalizable.

