To receive credit you MUST SHOW ALL YOUR WORK.

1. (18 pts) Let $L: V \rightarrow W$ be a linear map between vector spaces.
(a) (8 pts) Define $\operatorname{Ker}(L)$ and show it is a subspace of V;
(b) (10 pts) Define the nullity of L, the rank of L, state the rank-nullity theorem and prove it (in one line).
2. (14 pts) (a) (8 pts) Find a 2×2 matrix A which has eigenvector $\mathbf{v}_{1}=(2,1)^{T}$ with eigenvalue $\lambda_{1}=3$ and eigenvector $\mathbf{v}_{2}=(3,2)^{T}$ with eigenvalue $\lambda_{2}=1$.
(b) (6 pts$)$ Compute A^{n}, where A is the matrix in part (a).
3. (16 pts) It is determined that a predator-prey model in a certain ecosystem evolves according with the equations

$$
\left\{\begin{array}{l}
x_{1}(n+1)=0.3 x_{1}(n)+0.6 x_{2}(n) \\
x_{2}(n+1)=-0.1 x_{1}(n)+x_{2}(n)
\end{array}\right.
$$

where n denotes the number of years since an initial moment $n=0$, and $x_{1}(n), x_{2}(n)$ denote the two populations in year n.
(a) (2 pts) Between $x_{1}(n), x_{2}(n)$, which one must be the predator population, which one must be the prey population?
(b) (10 pts) Assuming known the initial data $x_{1}(0), x_{2}(0)$, find the formulae for $x_{1}(n), x_{2}(n)$.
(c) (4 pts) What happens with the two populations in the long run? Justify your answer. Do the initial conditions matter?
4. (16 pts) Let A, B be $n \times n$ real matrices.
(a) (10 pts) Show that if A is similar to B, then A and B have the same characteristic polynomial and, hence, the same eigenvalues.
(b) (6 pts) Do you think the converse is true? That is, if A and B have the same characteristic is it true that A and B are similar? Justify your answer.
Note: Similar matrices are called in Sadun's text conjugate matrices. We'll more often use similar matrices, as it is the wider accepted terminology.
5. (18 pts) Let $L: \mathbb{R}_{2}[t] \rightarrow \mathbb{R}_{2}[t]$ be the linear operator defined by $L(p(t))=t(p(t+1)-p(t))$.
(a) (4 pts) Find the matrix $[L]_{\mathcal{E}}^{\mathcal{E}}$, where $\mathcal{E}=\left\{1, t, t^{2}\right\}$.
(b) $(2 \mathrm{pts})$ Determine $\operatorname{rank}(L)$.
(c) (6 pts$)$ Is L diagonalizable? If yes, find a basis of $\mathbb{R}_{2}[t]$ that diagonalizes L, if not, explain why such basis does not exist.
(d) (6 pts) More generally, is the operator $L(p(t))=t(p(t+1)-p(t))$ diagonalizable when $L: \mathbb{R}_{n}[t] \rightarrow \mathbb{R}_{n}[t]$? What about the case $L: \mathbb{R}[t] \rightarrow \mathbb{R}[t]$?
Hint: How does $[L]_{\mathcal{E}}^{\mathcal{E}}$ look like in this cases? Just give a brief justification based on this.

Choose one and indicate your choice:

6. (14 pts) Let V be a real vector space.
(a) Define the dual V^{\prime} and prove that if V is finite dimensional, V and V^{\prime} are isomorphic vector spaces.
(b) Show also that there is a natural injective linear map from V to $V^{\prime \prime}=\left(V^{\prime}\right)^{\prime}$ and this map is an isomorphism when V is finite dimensional.

6'. (14 pts) State the Fundamental Isomorphism Theorem and use it to prove:
The 2nd Isomorphism Theorem: Suppose V is a vector space and that S and T are subspaces in V. Then $S /(S \cap T)$ and $(S+T) / T$ are naturally isomorphic vector spaces.

In the case when S and T are finite dimensional, deduce from the 2nd Iso Theorem another proof of the relation

$$
\operatorname{dim}(S+T)=\operatorname{dim}(S)+\operatorname{dim}(T)-\operatorname{dim}(S \cap T)
$$

Note: You may use without proof that $S \cap T$ and $S+T$ are subspaces, as well as the dimension formula for a quotient vector space.

Choose one and indicate your choice:

7. (14 pts) In the attached copy, you have Peter Lax's argument showing the existence and uniqueness of the discrete Dirichlet problem on a bounded domain for the Laplace operator.
Can the argument be adjusted to work if we replace the usual Laplace operator $\Delta u=u_{x x}+u_{y y}$, with a weighted Laplace operator $\square u=a u_{x x}+u_{y y}$, where $a>0$? If yes, explain what changes are needed, if no, explain what part of the argument breaks down. To be concrete, you could take $a=3$.

7'. (14 pts) Show that for any matrix $A \in \mathcal{M}_{n, n}(\mathbb{R})$, there exist a polynomial $q \in \mathbb{R}[t]$, so that $q(A)=0$, that is, if the variable t in the polynomial is replaced by the matrix A, then $q(A)$ is the zero matrix.

Note: If you use a theorem, you should prove it. Here is a hint to do this without any special theorem: consider the set of matrices $\left\{I, A, A^{2}, A^{3}, \ldots\right\}$ in the space $\mathcal{M}_{n, n}(\mathbb{R})$; what is $\operatorname{dim}\left(\mathcal{M}_{n, n}(\mathbb{R})\right)$?

