\qquad

1. (2 pts) Factor completely.

$$
x^{3}-8 x^{2}-9 x=
$$

2. (4 pts) Simplify as much as possible (assume $x \neq \pm 1$).

$$
\frac{4 x}{x^{2}-1}-\frac{2}{x+1}=
$$

3. (3 pts) Simplify. No negative or rational exponents in your final answer.
(a) $\left(\frac{4}{9}\right)^{-3 / 2}=$
(b) $2 \sqrt{12}-3 \sqrt{27}=$
(c) $\frac{a^{-1} b^{3}}{a^{-2} b^{4}}=$
4. (4 pts) (a) (1 pt) Find the distance between the points $(-1,2),(2,-1)$.
(b) (3 pts) Find the equation of the line that contains the points $(-1,2),(2,-1)$.
5. (6 pts) Sketch the graph of each of the following functions and mark the coordinates of axis intercepts.
(a) $f(x)=4-x^{2}$
(b) $g(x)=3 x-4$
(c) $h(x)= \begin{cases}4-x^{2} & \text { if } x \leq 2 \\ 3 x-4 & \text { if } x>2\end{cases}$
6. (4 pts) True or False? Assume a, b are positive real numbers. Circle "True" if the equality holds for all a, b. Otherwise, circle "False".

$$
\begin{array}{ccc}
\sqrt{a^{2}+b^{2}}=a+b & \text { True } & \text { False } \\
\frac{1}{\frac{1}{a}+\frac{1}{b}}=a+b & \text { True } & \text { False } \\
\ln (a+b)=\ln a+\ln b & \text { True } & \text { False } \\
\sin ^{2} a+\cos ^{2} b=1 & \text { True } & \text { False }
\end{array}
$$

7. (5 pts) Fill in the exact values:
$\sin (\pi / 6)=$

$$
\cos (5 \pi / 4)=
$$

$$
\tan ^{-1}(1)=
$$

$$
\ln (\sqrt{e})=
$$

$$
\log _{3}\left(\frac{1}{9}\right)=
$$

8. (6 pts) Given $f(x)=\sqrt{4-x^{2}}$ and $g(x)=x^{2}+2$, find:
(a) (2 pts) Find the domain of the function $f(x)$.
(b) (2 pts) Find a formula for the composition $(g \circ f)(x)$.
(c) $(2 \mathrm{pts})$ Find a formula for the composition $(f \circ g)(x)$.
9. (12 pts) Find all real solutions of the following equations (3 pts each):
(a) $x^{2}+x-1=0$
(b) $9^{x}=3^{x-1}$
(c) $7 \cdot\left(2^{3 x}\right)=5$ Leave your answer as a logarithm for this one.
(d) $\sin (2 x)=\cos x \quad$ OK to find all solutions $x \in[0,2 \pi]$ for this one.
10. (4 pts) Is there a rectangle whose area is equal to the square of its semi-perimeter? Justify your answer.
