Solutions to Test \#1

1a) True. Because $f(x)$ is continuous at 3 , we have $4=\lim _{x \rightarrow 3} f(x)=f(3)$.
1b) False. Square roots are always positive, so the limit is $+\infty$.
1c) False. Only $\lim _{x \rightarrow 0} \sin (2 x) / x=2$, but it is certainly not true that $\sin (2 x) / x=2$ for all numbers x.

1d) False. Because $\sec (x)=1 / \cos (x)$ and $\cos (x)=0$ for $x=\pi / 2+n \pi$ where $n=$ $0, \pm 1, \pm 2, \ldots, \sec (x)$ is not defined and thus not continuous at $x=\pi / 2+n \pi$.

1e) False. Consider the example $\lim _{x \rightarrow 0} x / x=1$.
1f) True.
2a) The object hits the ground when $s(t)=0$. We solve $0=160-16 t^{2}=16\left(10-t^{2}\right)$ and get $t= \pm \sqrt{10}$. Thus take $t=\sqrt{10}$.

2b) The average velocity over the interval $[0,3]$ is:

$$
\frac{s(3)-s(0)}{3-0}=\frac{160-16(3)^{3}-160}{3}=-48 \mathrm{ft} . / \mathrm{s..}
$$

2c) The instantaneous velocity at time $t=3$ is

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{s(3+h)-s(3)}{h} & =\lim _{h \rightarrow 0} \frac{160-16(3+h)^{2}-160+16(3)^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-16\left(3^{2}+6 h+h^{2}\right)+16(3)^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-16\left(3^{2}+6 h+h^{2}\right)+16(3)^{2}}{h}=\lim _{h \rightarrow 0} \frac{-16\left(6 h+h^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-16 h\left(6+h^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0}-16\left(6+h^{2}=-16(6)=-96 \mathrm{ft} . / \mathrm{s.}\right.
\end{aligned}
$$

3) The function $g(x)$ is clearly continuous everywhere except perhaps at $x=2$. We compute:

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} g(x) & =\lim _{x \rightarrow 2^{-}} k x^{2}-1=\lim _{x \rightarrow 2} k x^{2}-1=4 k-1 \\
\lim _{x \rightarrow 2^{+}} g(x) & =\lim _{x \rightarrow 2^{+}} 2 x+3=\lim _{x \rightarrow 2} 2 x+3=7
\end{aligned}
$$

Because $\lim _{x \rightarrow 2} g(x)$ exists if and only if $\lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{+}} g(x)$, we see that $\lim _{x \rightarrow 2} g(x)$ exists if and only if $4 k-1=7$ or $k=2$. If $k=2$, then

$$
\lim _{x \rightarrow 2} g(x)=\lim _{x \rightarrow 2+} g(x)=\lim _{x \rightarrow 2} g(x)=7
$$

If $k=2$, we also have $g(2)=2(2)^{2}-1=7$. Hence, if $k=2$, we have $\lim _{x \rightarrow 2} g(x)=7=g(2)$ so $g(x)$ is continuous at 2 and hence everywhere.

4a) $\lim _{x \rightarrow-2} \frac{x^{2}-2 x-8}{x^{2}-4}=\lim _{x \rightarrow-2} \frac{(x-4)(x+2)}{(x-2)(x+2)}=\lim _{x \rightarrow-2} \frac{(x-4)}{(x-2)}=\frac{-6}{-4}=\frac{3}{2}$.
4b) $\lim _{x \rightarrow-2} \frac{x^{2}-2}{x^{2}+4}=\frac{0}{(-2)^{2}+4}=0$
4c) $\lim _{x \rightarrow 3} \frac{|x-3|}{x^{2}-6 x+9}=\lim _{x \rightarrow 3} \frac{|x-3|}{(x-3)^{2}}=\lim _{x \rightarrow 3} \frac{1}{|x-3|}=+\infty$.
Note that $|x-3| \geq 0$ and $(x-3)^{2}=|x-3|^{2} \geq 0$, so the quotient must also be ≥ 0.
4d) $\lim _{x \rightarrow-2^{+}} \frac{x-1}{x+2}=-\infty$. Observe that for $x-2$, we have $x+2>0$ but for $-2<x<-1$, $x-1<0$. Hence the quotient $(x-1) /(x+2)<0$ for $x \in(-2,-1)$ so the limit is $-\infty$.

4e) $\lim _{x \rightarrow-\infty} \frac{4 x^{5}+3 x-2}{3 x^{5}+4}=\lim _{x \rightarrow-\infty} \frac{4 x^{5}}{3 x^{5}}=\frac{4}{3}$
4f) We use the Squeeze theorem. Observe that for all $x,-1 \leq \sin \left(x^{2}\right) \leq 1$. Hence,

$$
-\frac{1}{x^{2}} \leq \frac{\sin \left(x^{2}\right)}{x^{2}} \leq \frac{1}{x^{2}}
$$

We know that $\lim _{x \rightarrow \infty} \pm 1 / x^{2}=0$, so, by the Squeeze theorem $\lim _{x \rightarrow+\infty} \frac{\sin \left(x^{2}\right)}{x^{2}}=0$.
$4 \mathrm{~g})$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (5 x)}{x+\sin x} & =\lim _{x \rightarrow 0} \frac{\frac{\tan (5 x)}{5 x} \cdot(5 x)}{x+\frac{\sin x}{x} \cdot x}==\lim _{x \rightarrow 0} \frac{\frac{\tan (5 x)}{5 x} \cdot(5 x)}{x\left(1+\frac{\sin x}{x}\right)} \\
& =\lim _{x \rightarrow 0} \frac{\frac{\tan (5 x)}{5 x} \cdot 5}{\left(1+\frac{\sin x}{x}\right)}=\frac{1 \cdot 5}{1+1}=\frac{5}{2}
\end{aligned}
$$

4h)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x^{2}} & =\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x^{2}} \frac{1+\cos (3 x)}{1+\cos (3 x)} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos ^{2}(3 x)}{x^{2}} \frac{1}{1+\cos (3 x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2}(3 x)}{x^{2}} \frac{1}{1+\cos (3 x)} \\
& =\lim _{x \rightarrow 0} 3 \frac{\sin (3 x)}{3 x} 3 \frac{\sin (3 x)}{3 x} \frac{1}{1+\cos (3 x)} \\
& =(3)(3) \frac{1}{1+1}=\frac{9}{2}
\end{aligned}
$$

5) The function $f(x)=x^{4}+x-1$ is a polynomial so it is continuous everywhere. Thus we may apply the IVT on any interval. We are trying to solve the equation $f(x)=0$. Because $-1=f(0)<0<1=f(1)$, the IVT implies that there is a solution in $[0,1]$. We compute $f(1 / 2)=(1 / 16)+(1 / 2)-1=(1+8-16) / 16<0$. Thus the IVT implies that there is a solution in the interval $[1 / 2,1]$. This gives one solution to the desired precision. Next we compute $f(-2)=13>0>-1=f(-1)$ so there is a solution in $[-2,-1]$. We compute:

$$
f(-3 / 2)=(81 / 16)-(3 / 2)-1=\frac{81-24-16}{16}>0
$$

so we have the inequalities $f(-3 / 2)>0>f(-1)$ and the IVT implies that there is a solution in $[-3 / 2,-1]$.
6) There are many possible sketches satisfying these requirements.

7a) The definition can be read in the textbook.
7b) We compute $|f(x)-L|=|(5 x-7)-8|=5|x-3|$. Thus,

$$
\text { if }|x-3|<\delta, \text { then }|f(x)-L|=5|x-3|<5 \delta
$$

Hence, given $\varepsilon>0$ choose $\delta=\frac{\varepsilon}{5}$. With this choice, if $0<|x-3|<\delta=\varepsilon / 5$, we have $|f(x)-L|=5|x-3|<5 \delta=5 \frac{\varepsilon}{5}=\varepsilon$ and this proves the desired limit.

7c) Compute

$$
|f(x)-L|=\left|\left(2 x^{2}+1\right)-19\right|=\left|2 x^{2}-18\right|=2|x-3||x+3|
$$

We need to control the size of the factor $|x+3|$.
Make a preliminary choice, $\delta \leq 1$.
Then $|x-3|<\delta \leq 1$ implies $|\bar{x}-3|<1$, so $-1<x-3<1$. By adding 6 to all sides, we get $5<x+3<7$. Hence, we've shown that

$$
\text { if }|x-3|<\delta \leq 1 \text {, then }|x+3|<7 \text {, hence, further, }
$$

$$
\begin{equation*}
\text { If }|x-3|<\delta \leq 1, \text { then }|f(x)-L|=2|x-3||x+3|<2 \delta \cdot 7=14 \delta \tag{0.1}
\end{equation*}
$$

So, given $\varepsilon>0$, make the final choice, $\delta=\min (1, \varepsilon / 14)$. With this choice $\delta \leq 1$ and $\delta \leq \varepsilon / 14$, so we can complete inequality (0.1) to:
if $|x-3|<\delta=\min (1, \varepsilon / 14)$, then $|f(x)-L|=2|x-3||x+3|<2 \delta \cdot 7=14 \delta \leq 14 \frac{\varepsilon}{14}=\varepsilon$, as required.

