Solutions to Exam \#2

1a) True. This follows from the power law and the differentiation rules $(c f)^{\prime}=c f^{\prime}$ and $(f+g)^{\prime}=f^{\prime}+g^{\prime}$.

1b) False. You can't evaluate the function (i.e. substitute in 2 for x) before differentiating.
1c) True. We have $y^{\prime}=\cos (x)$ and $y^{\prime \prime}=-\sin (x)=-y$.
1d) False. We compute $(\cos (g(x)))^{\prime}$ by using the chain rule, not the product rule. The correct expression would be $h^{\prime}(x)=-\sin (g(x)) g^{\prime}(x)$.

1e) True. Just apply the chain rule.
1f) True. We compute $y^{\prime}=1 / x$ so the slope of the tangent line at $(a, \ln (a))$ is $1 / a$ and $\lim _{a \rightarrow 0^{+}} 1 / a=\infty$.

2a) $\frac{d}{d x}\left(3 x^{5}-2 \sqrt{x}+10^{x}\right)=3(5) x^{4}-2 \frac{1}{2 \sqrt{x}}+\ln (10) 10^{x}$

2b)

$$
\frac{d}{d x}\left(\frac{\arcsin x}{x^{2}+4}\right)=\frac{\frac{1}{\sqrt{1-x^{2}}}\left(x^{2}+4\right)-2 x \arcsin (x)}{\left(x^{2}+4\right)^{2}}
$$

2c)

$$
\frac{d}{d x}\left(e^{\cos x} \tan x\right)=e^{\cos (x)}(-\sin (x)) \tan (x)+e^{\cos (x)} \sec ^{2}(x)
$$

2d)

$$
\begin{aligned}
\frac{d}{d x}(\ln (\sec (\arctan x))) & =\frac{\sec (\arctan (x)) \tan (\arctan (x)) \frac{1}{1+x^{2}}}{\sec (\arctan (x))} \\
& =\tan (\arctan (x)) \frac{1}{1+x^{2}} \\
& =\frac{x}{1+x^{2}}
\end{aligned}
$$

2e) Take the logarithm of each side and simplify:

$$
\ln (y)=\ln \left(\left(1+x^{2}\right)^{1 / x}\right)=\frac{1}{x} \ln \left(1+x^{2}\right)
$$

We then differentiate both sides:

$$
\begin{aligned}
\frac{d}{d x} \ln (y) & =\frac{d}{d x}\left(\frac{1}{x} \ln \left(1+x^{2}\right)\right) \\
\frac{y^{\prime}}{y} & =\left(-\frac{1}{x^{2}}\right) \ln \left(1+x^{2}\right)+\left(\frac{1}{x}\right) \frac{2 x}{1+x^{2}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
y^{\prime} & =y\left(\left(-\frac{1}{x^{2}}\right) \ln \left(1+x^{2}\right)+\left(\frac{1}{x}\right) \frac{2 x}{1+x^{2}}\right) \\
& =\left(1+x^{2}\right)^{1 / x}\left(-\frac{\ln \left(1+x^{2}\right)}{x^{2}}+\frac{2}{1+x^{2}}\right)
\end{aligned}
$$

3) Let y be the altitude of the rocket above the launch pad (in kilometers). Let z be the distance from the rocket to the radar station. You should make a picture and mark these variables on your picture. Note that both y and z vary with time, whereas the horizontal distance between the launch pad and radar station is a constant (30 km). From Pythagorean theorem, $z^{2}=y^{2}+(30)^{2}$. Differentiate both sides of this equality with respect to t :

$$
2 z \frac{d z}{d t}=2 y \frac{d y}{d t}
$$

When $z=50$, We have $(50)^{2}=y^{2}+(30)^{2}$ so $y=40$. Thus, if $z=50$ and $d z / d t=60$, we have

$$
2(50)(60)=2(40) \frac{d y}{d t}
$$

so $\frac{d y}{d t}=\frac{2(50)(60)}{2(40)}=\frac{3000}{40}=75$ kilometers per minute.

4a) We compute $f^{\prime}(x)=\frac{1}{4} x^{-3 / 4}$. Then $f\left(x_{0}\right)=f(1)=(1)^{1 / 4}=1$ and $f^{\prime}\left(x_{0}\right)=f^{\prime}(1)=$ $\frac{1}{4}(1)^{-3 / 4}=\frac{1}{4}$. Hence, the linear approximation is

$$
x^{1 / 4} \approx 1+\frac{1}{4}(x-1)
$$

4b) Using the formula

$$
x^{1 / 4} \approx 1+\frac{1}{4}(x-1)
$$

we see that

$$
(.92)^{1 / 4} \approx 1+\frac{1}{4}(0.92-1)=1+\frac{-.08}{4}=0.98
$$

5) We differentiate implicitly:

$$
4\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)=25\left(2 x-2 y y^{\prime}\right)
$$

Now substitute in $x=3$ and $y=1$ into the preceding equation and get:

$$
\begin{aligned}
4\left(3^{2}+1^{2}\right)\left(2(3)+2(1) y^{\prime}\right) & =25\left(2(3)-2(1) y^{\prime}\right) \\
4(10)\left(6+2 y^{\prime}\right) & =25\left(6-2 y^{\prime}\right) \\
240+80 y^{\prime} & =150-50 y^{\prime} \\
130 y^{\prime} & =150-240=-90 \\
y^{\prime} & =-\frac{90}{130}=-\frac{9}{13}
\end{aligned}
$$

Thus, the slope of the line tangent to the curve at $(3,1)$ is $-9 / 13$ so the equation of the line is:

$$
y-1=-\frac{9}{13}(x-3)
$$

6a) We compute:

$$
\begin{aligned}
\frac{d}{d x} \cos (x) & =\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cos (x) \cos (h)-\sin (x) \sin (h)-\cos (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cos (x) \cos (h)-\cos (x)}{h}-\lim _{h \rightarrow 0} \sin (x) \frac{\sin (h)}{h} \\
& =\cos (x) \lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}-\sin (x) \lim _{h \rightarrow 0} \frac{\sin (h)}{h} \\
& =\cos (x)(0)-\sin (x)(1) \\
& =-\sin (x)
\end{aligned}
$$

6b) We differentiate both sides of the identity $\cos (\arccos (x))=x$ and get

$$
\begin{aligned}
\frac{d}{d x}(\cos (\arccos (x))) & =\frac{d}{d x} x \\
-\sin (\arccos (x)) \frac{d}{d x} \arccos (x) & =1
\end{aligned}
$$

Thus,

$$
\frac{d}{d x} \arccos (x)=-\frac{1}{\sin (\arccos (x))}
$$

We simplify $\sin (\arccos (x))$ by drawing a right triangle containing the angle $\theta=\arccos (x)$. If the side adjacent to the angle θ has length x, then the hypotenuse must have length 1. The side opposite the angle θ must then have length $\sqrt{1-x^{2}}$. Hence, $\sin (\arccos (x))=$ $\sin (\theta)=\sqrt{1-x^{2}} / 1$ and we have

$$
\frac{d}{d x} \arccos (x)=-\frac{1}{\sin (\arccos (x))}=-\frac{1}{\sqrt{1-x^{2}}}
$$

7) The chain rule tells us that

$$
h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) .
$$

We differentiate again and get:

$$
\begin{aligned}
h^{\prime \prime}(x) & =\frac{d}{d x}\left(f^{\prime}(g(x)) g^{\prime}(x)\right) \\
& =\left(\frac{d}{d x}\left(f^{\prime}(g(x))\right)\right) g^{\prime}(x)+f^{\prime}(g(x)) \frac{d}{d x} g^{\prime}(x) \quad \text { by the product rule } \\
& =f^{\prime \prime}(g(x)) g^{\prime}(x) g^{\prime}(x)+f^{\prime}(g(x)) g^{\prime \prime}(x)
\end{aligned}
$$

